Distributed Conformal Prediction via Message Passing

Haifeng Wen, Hong Xing, Osvaldo Simeone
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:66539-66557, 2025.

Abstract

Post-hoc calibration of pre-trained models is critical for ensuring reliable inference, especially in safety-critical domains such as healthcare. Conformal Prediction (CP) offers a robust post-hoc calibration framework, providing distribution-free statistical coverage guarantees for prediction sets by leveraging held-out datasets. In this work, we address a decentralized setting where each device has limited calibration data and can communicate only with its neighbors over an arbitrary graph topology. We propose two message-passing-based approaches for achieving reliable inference via CP: quantile-based distributed conformal prediction (Q-DCP) and histogram-based distributed conformal prediction (H-DCP). Q-DCP employs distributed quantile regression enhanced with tailored smoothing and regularization terms to accelerate convergence, while H-DCP uses a consensus-based histogram estimation approach. Through extensive experiments, we investigate the trade-offs between hyperparameter tuning requirements, communication overhead, coverage guarantees, and prediction set sizes across different network topologies. The code of our work is released on: https://github.com/HaifengWen/Distributed-Conformal-Prediction.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wen25f, title = {Distributed Conformal Prediction via Message Passing}, author = {Wen, Haifeng and Xing, Hong and Simeone, Osvaldo}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {66539--66557}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wen25f/wen25f.pdf}, url = {https://proceedings.mlr.press/v267/wen25f.html}, abstract = {Post-hoc calibration of pre-trained models is critical for ensuring reliable inference, especially in safety-critical domains such as healthcare. Conformal Prediction (CP) offers a robust post-hoc calibration framework, providing distribution-free statistical coverage guarantees for prediction sets by leveraging held-out datasets. In this work, we address a decentralized setting where each device has limited calibration data and can communicate only with its neighbors over an arbitrary graph topology. We propose two message-passing-based approaches for achieving reliable inference via CP: quantile-based distributed conformal prediction (Q-DCP) and histogram-based distributed conformal prediction (H-DCP). Q-DCP employs distributed quantile regression enhanced with tailored smoothing and regularization terms to accelerate convergence, while H-DCP uses a consensus-based histogram estimation approach. Through extensive experiments, we investigate the trade-offs between hyperparameter tuning requirements, communication overhead, coverage guarantees, and prediction set sizes across different network topologies. The code of our work is released on: https://github.com/HaifengWen/Distributed-Conformal-Prediction.} }
Endnote
%0 Conference Paper %T Distributed Conformal Prediction via Message Passing %A Haifeng Wen %A Hong Xing %A Osvaldo Simeone %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wen25f %I PMLR %P 66539--66557 %U https://proceedings.mlr.press/v267/wen25f.html %V 267 %X Post-hoc calibration of pre-trained models is critical for ensuring reliable inference, especially in safety-critical domains such as healthcare. Conformal Prediction (CP) offers a robust post-hoc calibration framework, providing distribution-free statistical coverage guarantees for prediction sets by leveraging held-out datasets. In this work, we address a decentralized setting where each device has limited calibration data and can communicate only with its neighbors over an arbitrary graph topology. We propose two message-passing-based approaches for achieving reliable inference via CP: quantile-based distributed conformal prediction (Q-DCP) and histogram-based distributed conformal prediction (H-DCP). Q-DCP employs distributed quantile regression enhanced with tailored smoothing and regularization terms to accelerate convergence, while H-DCP uses a consensus-based histogram estimation approach. Through extensive experiments, we investigate the trade-offs between hyperparameter tuning requirements, communication overhead, coverage guarantees, and prediction set sizes across different network topologies. The code of our work is released on: https://github.com/HaifengWen/Distributed-Conformal-Prediction.
APA
Wen, H., Xing, H. & Simeone, O.. (2025). Distributed Conformal Prediction via Message Passing. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:66539-66557 Available from https://proceedings.mlr.press/v267/wen25f.html.

Related Material