Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration

Max Wilcoxson, Qiyang Li, Kevin Frans, Sergey Levine
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:66833-66860, 2025.

Abstract

Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled offline trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-labels unlabeled trajectories with optimistic rewards and high-level action labels, transforming prior data into high-level, task-relevant examples that encourage novelty-seeking behavior. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. In our experiments, SUPE consistently outperforms prior strategies across a suite of 42 long-horizon, sparse-reward tasks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wilcoxson25a, title = {Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration}, author = {Wilcoxson, Max and Li, Qiyang and Frans, Kevin and Levine, Sergey}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {66833--66860}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wilcoxson25a/wilcoxson25a.pdf}, url = {https://proceedings.mlr.press/v267/wilcoxson25a.html}, abstract = {Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled offline trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-labels unlabeled trajectories with optimistic rewards and high-level action labels, transforming prior data into high-level, task-relevant examples that encourage novelty-seeking behavior. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. In our experiments, SUPE consistently outperforms prior strategies across a suite of 42 long-horizon, sparse-reward tasks.} }
Endnote
%0 Conference Paper %T Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration %A Max Wilcoxson %A Qiyang Li %A Kevin Frans %A Sergey Levine %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wilcoxson25a %I PMLR %P 66833--66860 %U https://proceedings.mlr.press/v267/wilcoxson25a.html %V 267 %X Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled offline trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-labels unlabeled trajectories with optimistic rewards and high-level action labels, transforming prior data into high-level, task-relevant examples that encourage novelty-seeking behavior. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. In our experiments, SUPE consistently outperforms prior strategies across a suite of 42 long-horizon, sparse-reward tasks.
APA
Wilcoxson, M., Li, Q., Frans, K. & Levine, S.. (2025). Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:66833-66860 Available from https://proceedings.mlr.press/v267/wilcoxson25a.html.

Related Material