On the Emergence of Position Bias in Transformers

Xinyi Wu, Yifei Wang, Stefanie Jegelka, Ali Jadbabaie
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:67756-67781, 2025.

Abstract

Recent studies have revealed various manifestations of position bias in transformer architectures, from the "lost-in-the-middle" phenomenon to attention sinks, yet a comprehensive theoretical understanding of how attention masks and positional encodings shape these biases remains elusive. This paper presents a graph-theoretic framework for analyzing position bias in multi-layer attention. Modeling attention masks as directed graphs, we quantify how tokens interact with contextual information based on their sequential positions. We uncover two key insights: First, causal masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens. Second, we characterize the competing effects of the causal mask and relative positional encodings, such as the decay mask and rotary positional encoding (RoPE): while both mechanisms introduce distance-based decay within individual attention maps, their aggregate effect across multiple attention layers—coupled with the causal mask—leads to a trade-off between the long-term decay effects and the cumulative importance of early sequence positions. Through controlled numerical experiments, we not only validate our theoretical findings but also reproduce position biases observed in real-world LLMs. Our framework offers a principled foundation for understanding positional biases in transformers, shedding light on the complex interplay of attention mechanism components and guiding more informed architectural design.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wu25ad, title = {On the Emergence of Position Bias in Transformers}, author = {Wu, Xinyi and Wang, Yifei and Jegelka, Stefanie and Jadbabaie, Ali}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {67756--67781}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wu25ad/wu25ad.pdf}, url = {https://proceedings.mlr.press/v267/wu25ad.html}, abstract = {Recent studies have revealed various manifestations of position bias in transformer architectures, from the "lost-in-the-middle" phenomenon to attention sinks, yet a comprehensive theoretical understanding of how attention masks and positional encodings shape these biases remains elusive. This paper presents a graph-theoretic framework for analyzing position bias in multi-layer attention. Modeling attention masks as directed graphs, we quantify how tokens interact with contextual information based on their sequential positions. We uncover two key insights: First, causal masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens. Second, we characterize the competing effects of the causal mask and relative positional encodings, such as the decay mask and rotary positional encoding (RoPE): while both mechanisms introduce distance-based decay within individual attention maps, their aggregate effect across multiple attention layers—coupled with the causal mask—leads to a trade-off between the long-term decay effects and the cumulative importance of early sequence positions. Through controlled numerical experiments, we not only validate our theoretical findings but also reproduce position biases observed in real-world LLMs. Our framework offers a principled foundation for understanding positional biases in transformers, shedding light on the complex interplay of attention mechanism components and guiding more informed architectural design.} }
Endnote
%0 Conference Paper %T On the Emergence of Position Bias in Transformers %A Xinyi Wu %A Yifei Wang %A Stefanie Jegelka %A Ali Jadbabaie %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wu25ad %I PMLR %P 67756--67781 %U https://proceedings.mlr.press/v267/wu25ad.html %V 267 %X Recent studies have revealed various manifestations of position bias in transformer architectures, from the "lost-in-the-middle" phenomenon to attention sinks, yet a comprehensive theoretical understanding of how attention masks and positional encodings shape these biases remains elusive. This paper presents a graph-theoretic framework for analyzing position bias in multi-layer attention. Modeling attention masks as directed graphs, we quantify how tokens interact with contextual information based on their sequential positions. We uncover two key insights: First, causal masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens. Second, we characterize the competing effects of the causal mask and relative positional encodings, such as the decay mask and rotary positional encoding (RoPE): while both mechanisms introduce distance-based decay within individual attention maps, their aggregate effect across multiple attention layers—coupled with the causal mask—leads to a trade-off between the long-term decay effects and the cumulative importance of early sequence positions. Through controlled numerical experiments, we not only validate our theoretical findings but also reproduce position biases observed in real-world LLMs. Our framework offers a principled foundation for understanding positional biases in transformers, shedding light on the complex interplay of attention mechanism components and guiding more informed architectural design.
APA
Wu, X., Wang, Y., Jegelka, S. & Jadbabaie, A.. (2025). On the Emergence of Position Bias in Transformers. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:67756-67781 Available from https://proceedings.mlr.press/v267/wu25ad.html.

Related Material