Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models

Xiaoyu Wu, Jiaru Zhang, Steven Wu
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:68060-68077, 2025.

Abstract

Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small set of images to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the potential risks of data leakage by releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model’s learned distribution—from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting approximately 20% of fine-tuning data in most cases, significantly surpassing baseline performance. The code is available.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wu25as, title = {Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models}, author = {Wu, Xiaoyu and Zhang, Jiaru and Wu, Steven}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {68060--68077}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wu25as/wu25as.pdf}, url = {https://proceedings.mlr.press/v267/wu25as.html}, abstract = {Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small set of images to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the potential risks of data leakage by releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model’s learned distribution—from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting approximately 20% of fine-tuning data in most cases, significantly surpassing baseline performance. The code is available.} }
Endnote
%0 Conference Paper %T Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models %A Xiaoyu Wu %A Jiaru Zhang %A Steven Wu %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wu25as %I PMLR %P 68060--68077 %U https://proceedings.mlr.press/v267/wu25as.html %V 267 %X Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small set of images to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the potential risks of data leakage by releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model’s learned distribution—from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting approximately 20% of fine-tuning data in most cases, significantly surpassing baseline performance. The code is available.
APA
Wu, X., Zhang, J. & Wu, S.. (2025). Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:68060-68077 Available from https://proceedings.mlr.press/v267/wu25as.html.

Related Material