Neural Collapse Beyond the Unconstrained Features Model: Landscape, Dynamics, and Generalization in the Mean-Field Regime

Diyuan Wu, Marco Mondelli
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:67499-67536, 2025.

Abstract

Neural Collapse is a phenomenon where the last-layer representations of a well-trained neural network converge to a highly structured geometry. In this paper, we focus on its first (and most basic) property, known as NC1: the within-class variability vanishes. While prior theoretical studies establish the occurrence of NC1 via the data-agnostic unconstrained features model, our work adopts a data-specific perspective, analyzing NC1 in a three-layer neural network, with the first two layers operating in the mean-field regime and followed by a linear layer. In particular, we establish a fundamental connection between NC1 and the loss landscape: we prove that points with small empirical loss and gradient norm (thus, close to being stationary) approximately satisfy NC1, and the closeness to NC1 is controlled by the residual loss and gradient norm. We then show that (i) gradient flow on the mean squared error converges to NC1 solutions with small empirical loss, and (ii) for well-separated data distributions, both NC1 and vanishing test loss are achieved simultaneously. This aligns with the empirical observation that NC1 emerges during training while models attain near-zero test error. Overall, our results demonstrate that NC1 arises from gradient training due to the properties of the loss landscape, and they show the co-occurrence of NC1 and small test error for certain data distributions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wu25u, title = {Neural Collapse Beyond the Unconstrained Features Model: Landscape, Dynamics, and Generalization in the Mean-Field Regime}, author = {Wu, Diyuan and Mondelli, Marco}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {67499--67536}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wu25u/wu25u.pdf}, url = {https://proceedings.mlr.press/v267/wu25u.html}, abstract = {Neural Collapse is a phenomenon where the last-layer representations of a well-trained neural network converge to a highly structured geometry. In this paper, we focus on its first (and most basic) property, known as NC1: the within-class variability vanishes. While prior theoretical studies establish the occurrence of NC1 via the data-agnostic unconstrained features model, our work adopts a data-specific perspective, analyzing NC1 in a three-layer neural network, with the first two layers operating in the mean-field regime and followed by a linear layer. In particular, we establish a fundamental connection between NC1 and the loss landscape: we prove that points with small empirical loss and gradient norm (thus, close to being stationary) approximately satisfy NC1, and the closeness to NC1 is controlled by the residual loss and gradient norm. We then show that (i) gradient flow on the mean squared error converges to NC1 solutions with small empirical loss, and (ii) for well-separated data distributions, both NC1 and vanishing test loss are achieved simultaneously. This aligns with the empirical observation that NC1 emerges during training while models attain near-zero test error. Overall, our results demonstrate that NC1 arises from gradient training due to the properties of the loss landscape, and they show the co-occurrence of NC1 and small test error for certain data distributions.} }
Endnote
%0 Conference Paper %T Neural Collapse Beyond the Unconstrained Features Model: Landscape, Dynamics, and Generalization in the Mean-Field Regime %A Diyuan Wu %A Marco Mondelli %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wu25u %I PMLR %P 67499--67536 %U https://proceedings.mlr.press/v267/wu25u.html %V 267 %X Neural Collapse is a phenomenon where the last-layer representations of a well-trained neural network converge to a highly structured geometry. In this paper, we focus on its first (and most basic) property, known as NC1: the within-class variability vanishes. While prior theoretical studies establish the occurrence of NC1 via the data-agnostic unconstrained features model, our work adopts a data-specific perspective, analyzing NC1 in a three-layer neural network, with the first two layers operating in the mean-field regime and followed by a linear layer. In particular, we establish a fundamental connection between NC1 and the loss landscape: we prove that points with small empirical loss and gradient norm (thus, close to being stationary) approximately satisfy NC1, and the closeness to NC1 is controlled by the residual loss and gradient norm. We then show that (i) gradient flow on the mean squared error converges to NC1 solutions with small empirical loss, and (ii) for well-separated data distributions, both NC1 and vanishing test loss are achieved simultaneously. This aligns with the empirical observation that NC1 emerges during training while models attain near-zero test error. Overall, our results demonstrate that NC1 arises from gradient training due to the properties of the loss landscape, and they show the co-occurrence of NC1 and small test error for certain data distributions.
APA
Wu, D. & Mondelli, M.. (2025). Neural Collapse Beyond the Unconstrained Features Model: Landscape, Dynamics, and Generalization in the Mean-Field Regime. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:67499-67536 Available from https://proceedings.mlr.press/v267/wu25u.html.

Related Material