Causal Abstraction Inference under Lossy Representations

Kevin Muyuan Xia, Elias Bareinboim
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:68225-68235, 2025.

Abstract

The study of causal abstractions bridges two integral components of human intelligence: the ability to determine cause and effect, and the ability to interpret complex patterns into abstract concepts. Formally, causal abstraction frameworks define connections between complicated low-level causal models and simple high-level ones. One major limitation of most existing definitions is that they are not well-defined when considering lossy abstraction functions in which multiple low-level interventions can have different effects while mapping to the same high-level intervention (an assumption called the abstract invariance condition). In this paper, we introduce a new type of abstractions called projected abstractions that generalize existing definitions to accommodate lossy representations. We show how to construct a projected abstraction from the low-level model and how it translates equivalent observational, interventional, and counterfactual causal queries from low to high-level. Given that the true model is rarely available in practice we prove a new graphical criteria for identifying and estimating high-level causal queries from limited low-level data. Finally, we experimentally show the effectiveness of projected abstraction models in high-dimensional image settings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-xia25a, title = {Causal Abstraction Inference under Lossy Representations}, author = {Xia, Kevin Muyuan and Bareinboim, Elias}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {68225--68235}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/xia25a/xia25a.pdf}, url = {https://proceedings.mlr.press/v267/xia25a.html}, abstract = {The study of causal abstractions bridges two integral components of human intelligence: the ability to determine cause and effect, and the ability to interpret complex patterns into abstract concepts. Formally, causal abstraction frameworks define connections between complicated low-level causal models and simple high-level ones. One major limitation of most existing definitions is that they are not well-defined when considering lossy abstraction functions in which multiple low-level interventions can have different effects while mapping to the same high-level intervention (an assumption called the abstract invariance condition). In this paper, we introduce a new type of abstractions called projected abstractions that generalize existing definitions to accommodate lossy representations. We show how to construct a projected abstraction from the low-level model and how it translates equivalent observational, interventional, and counterfactual causal queries from low to high-level. Given that the true model is rarely available in practice we prove a new graphical criteria for identifying and estimating high-level causal queries from limited low-level data. Finally, we experimentally show the effectiveness of projected abstraction models in high-dimensional image settings.} }
Endnote
%0 Conference Paper %T Causal Abstraction Inference under Lossy Representations %A Kevin Muyuan Xia %A Elias Bareinboim %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-xia25a %I PMLR %P 68225--68235 %U https://proceedings.mlr.press/v267/xia25a.html %V 267 %X The study of causal abstractions bridges two integral components of human intelligence: the ability to determine cause and effect, and the ability to interpret complex patterns into abstract concepts. Formally, causal abstraction frameworks define connections between complicated low-level causal models and simple high-level ones. One major limitation of most existing definitions is that they are not well-defined when considering lossy abstraction functions in which multiple low-level interventions can have different effects while mapping to the same high-level intervention (an assumption called the abstract invariance condition). In this paper, we introduce a new type of abstractions called projected abstractions that generalize existing definitions to accommodate lossy representations. We show how to construct a projected abstraction from the low-level model and how it translates equivalent observational, interventional, and counterfactual causal queries from low to high-level. Given that the true model is rarely available in practice we prove a new graphical criteria for identifying and estimating high-level causal queries from limited low-level data. Finally, we experimentally show the effectiveness of projected abstraction models in high-dimensional image settings.
APA
Xia, K.M. & Bareinboim, E.. (2025). Causal Abstraction Inference under Lossy Representations. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:68225-68235 Available from https://proceedings.mlr.press/v267/xia25a.html.

Related Material