FG-CLIP: Fine-Grained Visual and Textual Alignment

Chunyu Xie, Bin Wang, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng, Yuhui Yin
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:68777-68793, 2025.

Abstract

Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model’s ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FineHARD, by integrating high-quality region-specific annotations with challenging fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP’s effectiveness in capturing fine-grained image details and improving overall model performance. The data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-xie25k, title = {{FG}-{CLIP}: Fine-Grained Visual and Textual Alignment}, author = {Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Zhang, Gengshen and Leng, Dawei and Yin, Yuhui}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {68777--68793}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/xie25k/xie25k.pdf}, url = {https://proceedings.mlr.press/v267/xie25k.html}, abstract = {Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model’s ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FineHARD, by integrating high-quality region-specific annotations with challenging fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP’s effectiveness in capturing fine-grained image details and improving overall model performance. The data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.} }
Endnote
%0 Conference Paper %T FG-CLIP: Fine-Grained Visual and Textual Alignment %A Chunyu Xie %A Bin Wang %A Fanjing Kong %A Jincheng Li %A Dawei Liang %A Gengshen Zhang %A Dawei Leng %A Yuhui Yin %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-xie25k %I PMLR %P 68777--68793 %U https://proceedings.mlr.press/v267/xie25k.html %V 267 %X Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model’s ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FineHARD, by integrating high-quality region-specific annotations with challenging fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP’s effectiveness in capturing fine-grained image details and improving overall model performance. The data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.
APA
Xie, C., Wang, B., Kong, F., Li, J., Liang, D., Zhang, G., Leng, D. & Yin, Y.. (2025). FG-CLIP: Fine-Grained Visual and Textual Alignment. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:68777-68793 Available from https://proceedings.mlr.press/v267/xie25k.html.

Related Material