Componential Prompt-Knowledge Alignment for Domain Incremental Learning

Kunlun Xu, Xu Zou, Gang Hua, Jiahuan Zhou
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:70032-70046, 2025.

Abstract

Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference. To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-xu25as, title = {Componential Prompt-Knowledge Alignment for Domain Incremental Learning}, author = {Xu, Kunlun and Zou, Xu and Hua, Gang and Zhou, Jiahuan}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {70032--70046}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/xu25as/xu25as.pdf}, url = {https://proceedings.mlr.press/v267/xu25as.html}, abstract = {Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference. To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt.} }
Endnote
%0 Conference Paper %T Componential Prompt-Knowledge Alignment for Domain Incremental Learning %A Kunlun Xu %A Xu Zou %A Gang Hua %A Jiahuan Zhou %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-xu25as %I PMLR %P 70032--70046 %U https://proceedings.mlr.press/v267/xu25as.html %V 267 %X Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference. To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt.
APA
Xu, K., Zou, X., Hua, G. & Zhou, J.. (2025). Componential Prompt-Knowledge Alignment for Domain Incremental Learning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:70032-70046 Available from https://proceedings.mlr.press/v267/xu25as.html.

Related Material