Scalable Model Merging with Progressive Layer-wise Distillation

Jing Xu, Jiazheng Li, Jingzhao Zhang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:69451-69477, 2025.

Abstract

Model merging offers an effective way to integrate the capabilities of multiple fine-tuned models. However, the performance degradation of the merged model remains a challenge, particularly when none or few data are available. This paper first highlights the necessity of domain-specific data for model merging by proving that data-agnostic algorithms can have arbitrarily bad worst-case performances. Building on this theoretical insight, we explore the relationship between model merging and distillation, introducing a novel few-shot merging algorithm, ProDistill (Progressive Layer-wise Distillation). Unlike common belief that layer-wise training hurts performance, we show that layer-wise teacher-student distillation not only enhances the scalability but also improves model merging performance. We conduct extensive experiments to show that compared to existing few-shot merging methods,ProDistill achieves state-of-the-art performance, with up to 6.14% and 6.61% improvements in vision and NLU tasks. Furthermore, we extend the experiments to models with over 10B parameters, showcasing the exceptional scalability of ProDistill.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-xu25r, title = {Scalable Model Merging with Progressive Layer-wise Distillation}, author = {Xu, Jing and Li, Jiazheng and Zhang, Jingzhao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {69451--69477}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/xu25r/xu25r.pdf}, url = {https://proceedings.mlr.press/v267/xu25r.html}, abstract = {Model merging offers an effective way to integrate the capabilities of multiple fine-tuned models. However, the performance degradation of the merged model remains a challenge, particularly when none or few data are available. This paper first highlights the necessity of domain-specific data for model merging by proving that data-agnostic algorithms can have arbitrarily bad worst-case performances. Building on this theoretical insight, we explore the relationship between model merging and distillation, introducing a novel few-shot merging algorithm, ProDistill (Progressive Layer-wise Distillation). Unlike common belief that layer-wise training hurts performance, we show that layer-wise teacher-student distillation not only enhances the scalability but also improves model merging performance. We conduct extensive experiments to show that compared to existing few-shot merging methods,ProDistill achieves state-of-the-art performance, with up to 6.14% and 6.61% improvements in vision and NLU tasks. Furthermore, we extend the experiments to models with over 10B parameters, showcasing the exceptional scalability of ProDistill.} }
Endnote
%0 Conference Paper %T Scalable Model Merging with Progressive Layer-wise Distillation %A Jing Xu %A Jiazheng Li %A Jingzhao Zhang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-xu25r %I PMLR %P 69451--69477 %U https://proceedings.mlr.press/v267/xu25r.html %V 267 %X Model merging offers an effective way to integrate the capabilities of multiple fine-tuned models. However, the performance degradation of the merged model remains a challenge, particularly when none or few data are available. This paper first highlights the necessity of domain-specific data for model merging by proving that data-agnostic algorithms can have arbitrarily bad worst-case performances. Building on this theoretical insight, we explore the relationship between model merging and distillation, introducing a novel few-shot merging algorithm, ProDistill (Progressive Layer-wise Distillation). Unlike common belief that layer-wise training hurts performance, we show that layer-wise teacher-student distillation not only enhances the scalability but also improves model merging performance. We conduct extensive experiments to show that compared to existing few-shot merging methods,ProDistill achieves state-of-the-art performance, with up to 6.14% and 6.61% improvements in vision and NLU tasks. Furthermore, we extend the experiments to models with over 10B parameters, showcasing the exceptional scalability of ProDistill.
APA
Xu, J., Li, J. & Zhang, J.. (2025). Scalable Model Merging with Progressive Layer-wise Distillation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:69451-69477 Available from https://proceedings.mlr.press/v267/xu25r.html.

Related Material