unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning

Yafei Yang, Zihui Zhang, Bo Yang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:71543-71568, 2025.

Abstract

We study the challenging problem of unsupervised multi-object segmentation on single images. Existing methods, which rely on image reconstruction objectives to learn objectness or leverage pretrained image features to group similar pixels, often succeed only in segmenting simple synthetic objects or discovering a limited number of real-world objects. In this paper, we introduce unMORE, a novel two-stage pipeline designed to identify many complex objects in real-world images. The key to our approach involves explicitly learning three levels of carefully defined object-centric representations in the first stage. Subsequently, our multi-object reasoning module utilizes these learned object priors to discover multiple objects in the second stage. Notably, this reasoning module is entirely network-free and does not require human labels. Extensive experiments demonstrate that unMORE significantly outperforms all existing unsupervised methods across 6 real-world benchmark datasets, including the challenging COCO dataset, achieving state-of-the-art object segmentation results. Remarkably, our method excels in crowded images where all baselines collapse. Our code and data are available at https://github.com/vLAR-group/unMORE.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-yang25au, title = {un{MORE}: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning}, author = {Yang, Yafei and Zhang, Zihui and Yang, Bo}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {71543--71568}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/yang25au/yang25au.pdf}, url = {https://proceedings.mlr.press/v267/yang25au.html}, abstract = {We study the challenging problem of unsupervised multi-object segmentation on single images. Existing methods, which rely on image reconstruction objectives to learn objectness or leverage pretrained image features to group similar pixels, often succeed only in segmenting simple synthetic objects or discovering a limited number of real-world objects. In this paper, we introduce unMORE, a novel two-stage pipeline designed to identify many complex objects in real-world images. The key to our approach involves explicitly learning three levels of carefully defined object-centric representations in the first stage. Subsequently, our multi-object reasoning module utilizes these learned object priors to discover multiple objects in the second stage. Notably, this reasoning module is entirely network-free and does not require human labels. Extensive experiments demonstrate that unMORE significantly outperforms all existing unsupervised methods across 6 real-world benchmark datasets, including the challenging COCO dataset, achieving state-of-the-art object segmentation results. Remarkably, our method excels in crowded images where all baselines collapse. Our code and data are available at https://github.com/vLAR-group/unMORE.} }
Endnote
%0 Conference Paper %T unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning %A Yafei Yang %A Zihui Zhang %A Bo Yang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-yang25au %I PMLR %P 71543--71568 %U https://proceedings.mlr.press/v267/yang25au.html %V 267 %X We study the challenging problem of unsupervised multi-object segmentation on single images. Existing methods, which rely on image reconstruction objectives to learn objectness or leverage pretrained image features to group similar pixels, often succeed only in segmenting simple synthetic objects or discovering a limited number of real-world objects. In this paper, we introduce unMORE, a novel two-stage pipeline designed to identify many complex objects in real-world images. The key to our approach involves explicitly learning three levels of carefully defined object-centric representations in the first stage. Subsequently, our multi-object reasoning module utilizes these learned object priors to discover multiple objects in the second stage. Notably, this reasoning module is entirely network-free and does not require human labels. Extensive experiments demonstrate that unMORE significantly outperforms all existing unsupervised methods across 6 real-world benchmark datasets, including the challenging COCO dataset, achieving state-of-the-art object segmentation results. Remarkably, our method excels in crowded images where all baselines collapse. Our code and data are available at https://github.com/vLAR-group/unMORE.
APA
Yang, Y., Zhang, Z. & Yang, B.. (2025). unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:71543-71568 Available from https://proceedings.mlr.press/v267/yang25au.html.

Related Material