Understanding Model Ensemble in Transferable Adversarial Attack

Wei Yao, Zeliang Zhang, Huayi Tang, Yong Liu
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:71798-71833, 2025.

Abstract

Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, validating three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-yao25f, title = {Understanding Model Ensemble in Transferable Adversarial Attack}, author = {Yao, Wei and Zhang, Zeliang and Tang, Huayi and Liu, Yong}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {71798--71833}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/yao25f/yao25f.pdf}, url = {https://proceedings.mlr.press/v267/yao25f.html}, abstract = {Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, validating three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks.} }
Endnote
%0 Conference Paper %T Understanding Model Ensemble in Transferable Adversarial Attack %A Wei Yao %A Zeliang Zhang %A Huayi Tang %A Yong Liu %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-yao25f %I PMLR %P 71798--71833 %U https://proceedings.mlr.press/v267/yao25f.html %V 267 %X Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, validating three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks.
APA
Yao, W., Zhang, Z., Tang, H. & Liu, Y.. (2025). Understanding Model Ensemble in Transferable Adversarial Attack. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:71798-71833 Available from https://proceedings.mlr.press/v267/yao25f.html.

Related Material