Optimal and Practical Batched Linear Bandit Algorithm

Sanghoon Yu, Min-Hwan Oh
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:73262-73285, 2025.

Abstract

We study the linear bandit problem under limited adaptivity, known as the batched linear bandit. While existing approaches can achieve near-optimal regret in theory, they are often computationally prohibitive or underperform in practice. We propose BLAE, a novel batched algorithm that integrates arm elimination with regularized G-optimal design, achieving the minimax optimal regret (up to logarithmic factors in $T$) in both large-$K$ and small-$K$ regimes for the first time, while using only $O(\log\log T)$ batches. Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds. Crucially, BLAE demonstrates low computational overhead and strong empirical performance, outperforming state-of-the-art methods in extensive numerical evaluations. Thus, BLAE is the first algorithm to combine provable minimax-optimality in all regimes and practical superiority in batched linear bandits.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-yu25q, title = {Optimal and Practical Batched Linear Bandit Algorithm}, author = {Yu, Sanghoon and Oh, Min-Hwan}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {73262--73285}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/yu25q/yu25q.pdf}, url = {https://proceedings.mlr.press/v267/yu25q.html}, abstract = {We study the linear bandit problem under limited adaptivity, known as the batched linear bandit. While existing approaches can achieve near-optimal regret in theory, they are often computationally prohibitive or underperform in practice. We propose BLAE, a novel batched algorithm that integrates arm elimination with regularized G-optimal design, achieving the minimax optimal regret (up to logarithmic factors in $T$) in both large-$K$ and small-$K$ regimes for the first time, while using only $O(\log\log T)$ batches. Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds. Crucially, BLAE demonstrates low computational overhead and strong empirical performance, outperforming state-of-the-art methods in extensive numerical evaluations. Thus, BLAE is the first algorithm to combine provable minimax-optimality in all regimes and practical superiority in batched linear bandits.} }
Endnote
%0 Conference Paper %T Optimal and Practical Batched Linear Bandit Algorithm %A Sanghoon Yu %A Min-Hwan Oh %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-yu25q %I PMLR %P 73262--73285 %U https://proceedings.mlr.press/v267/yu25q.html %V 267 %X We study the linear bandit problem under limited adaptivity, known as the batched linear bandit. While existing approaches can achieve near-optimal regret in theory, they are often computationally prohibitive or underperform in practice. We propose BLAE, a novel batched algorithm that integrates arm elimination with regularized G-optimal design, achieving the minimax optimal regret (up to logarithmic factors in $T$) in both large-$K$ and small-$K$ regimes for the first time, while using only $O(\log\log T)$ batches. Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds. Crucially, BLAE demonstrates low computational overhead and strong empirical performance, outperforming state-of-the-art methods in extensive numerical evaluations. Thus, BLAE is the first algorithm to combine provable minimax-optimality in all regimes and practical superiority in batched linear bandits.
APA
Yu, S. & Oh, M.. (2025). Optimal and Practical Batched Linear Bandit Algorithm. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:73262-73285 Available from https://proceedings.mlr.press/v267/yu25q.html.

Related Material