Reinforce LLM Reasoning through Multi-Agent Reflection

Yurun Yuan, Tengyang Xie
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:73701-73731, 2025.

Abstract

Leveraging more test-time computation has proven to be an effective way to boost the reasoning capabilities of large language models (LLMs). Among various methods, the verify-and-improve paradigm stands out for enabling dynamic solution exploration and feedback incorporation. However, existing approaches often suffer from restricted feedback spaces and lack of coordinated training of different parties, leading to suboptimal performance. To address this, we model this multi-turn refinement process as a Markov Decision Process and introduce DPSDP (Direct Policy Search by Dynamic Programming), a reinforcement learning algorithm that trains an actor-critic LLM system to iteratively refine answers via direct preference learning on self-generated data. Theoretically, DPSDP can match the performance of any policy within the training distribution. Empirically, we instantiate DPSDP with various base models and show improvements on both in- and out-of-distribution benchmarks. For example, on benchmark MATH 500, majority voting over five refinement steps increases first-turn accuracy from 58.2% to 63.2% with Ministral-based models. An ablation study further confirms the benefits of multi-agent collaboration and out-of-distribution generalization.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-yuan25l, title = {Reinforce {LLM} Reasoning through Multi-Agent Reflection}, author = {Yuan, Yurun and Xie, Tengyang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {73701--73731}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/yuan25l/yuan25l.pdf}, url = {https://proceedings.mlr.press/v267/yuan25l.html}, abstract = {Leveraging more test-time computation has proven to be an effective way to boost the reasoning capabilities of large language models (LLMs). Among various methods, the verify-and-improve paradigm stands out for enabling dynamic solution exploration and feedback incorporation. However, existing approaches often suffer from restricted feedback spaces and lack of coordinated training of different parties, leading to suboptimal performance. To address this, we model this multi-turn refinement process as a Markov Decision Process and introduce DPSDP (Direct Policy Search by Dynamic Programming), a reinforcement learning algorithm that trains an actor-critic LLM system to iteratively refine answers via direct preference learning on self-generated data. Theoretically, DPSDP can match the performance of any policy within the training distribution. Empirically, we instantiate DPSDP with various base models and show improvements on both in- and out-of-distribution benchmarks. For example, on benchmark MATH 500, majority voting over five refinement steps increases first-turn accuracy from 58.2% to 63.2% with Ministral-based models. An ablation study further confirms the benefits of multi-agent collaboration and out-of-distribution generalization.} }
Endnote
%0 Conference Paper %T Reinforce LLM Reasoning through Multi-Agent Reflection %A Yurun Yuan %A Tengyang Xie %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-yuan25l %I PMLR %P 73701--73731 %U https://proceedings.mlr.press/v267/yuan25l.html %V 267 %X Leveraging more test-time computation has proven to be an effective way to boost the reasoning capabilities of large language models (LLMs). Among various methods, the verify-and-improve paradigm stands out for enabling dynamic solution exploration and feedback incorporation. However, existing approaches often suffer from restricted feedback spaces and lack of coordinated training of different parties, leading to suboptimal performance. To address this, we model this multi-turn refinement process as a Markov Decision Process and introduce DPSDP (Direct Policy Search by Dynamic Programming), a reinforcement learning algorithm that trains an actor-critic LLM system to iteratively refine answers via direct preference learning on self-generated data. Theoretically, DPSDP can match the performance of any policy within the training distribution. Empirically, we instantiate DPSDP with various base models and show improvements on both in- and out-of-distribution benchmarks. For example, on benchmark MATH 500, majority voting over five refinement steps increases first-turn accuracy from 58.2% to 63.2% with Ministral-based models. An ablation study further confirms the benefits of multi-agent collaboration and out-of-distribution generalization.
APA
Yuan, Y. & Xie, T.. (2025). Reinforce LLM Reasoning through Multi-Agent Reflection. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:73701-73731 Available from https://proceedings.mlr.press/v267/yuan25l.html.

Related Material