Graph Diffusion for Robust Multi-Agent Coordination

Xianghua Zeng, Hang Su, Zhengyi Wang, Zhiyuan Lin
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:74157-74174, 2025.

Abstract

Offline multi-agent reinforcement learning (MARL) struggles to estimate out-of-distribution states and actions due to the absence of real-time environmental feedback. While diffusion models show promise in addressing these challenges, their application primarily focuses on independently diffusing the historical trajectories of individual agents, neglecting crucial multi-agent coordination dynamics and reducing policy robustness in dynamic environments. In this paper, we propose MCGD, a novel Multi-agent Coordination framework based on Graph Diffusion models to improve the effectiveness and robustness of collaborative policies. Specifically, we begin by constructing a sparse coordination graph that includes continuous node attributes and discrete edge attributes to effectively identify the underlying dynamics of multi-agent interactions. Next, we derive transition probabilities between edge categories and present adaptive categorical diffusion to capture the structure diversity of multi-agent coordination. Leveraging this coordination structure, we define neighbor-dependent forward noise and develop anisotropic diffusion to enhance the action diversity of each agent. Extensive experiments across various multi-agent environments demonstrate that MCGD significantly outperforms existing state-of-the-art baselines in coordination performance and policy robustness in dynamic environments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zeng25f, title = {Graph Diffusion for Robust Multi-Agent Coordination}, author = {Zeng, Xianghua and Su, Hang and Wang, Zhengyi and Lin, Zhiyuan}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {74157--74174}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zeng25f/zeng25f.pdf}, url = {https://proceedings.mlr.press/v267/zeng25f.html}, abstract = {Offline multi-agent reinforcement learning (MARL) struggles to estimate out-of-distribution states and actions due to the absence of real-time environmental feedback. While diffusion models show promise in addressing these challenges, their application primarily focuses on independently diffusing the historical trajectories of individual agents, neglecting crucial multi-agent coordination dynamics and reducing policy robustness in dynamic environments. In this paper, we propose MCGD, a novel Multi-agent Coordination framework based on Graph Diffusion models to improve the effectiveness and robustness of collaborative policies. Specifically, we begin by constructing a sparse coordination graph that includes continuous node attributes and discrete edge attributes to effectively identify the underlying dynamics of multi-agent interactions. Next, we derive transition probabilities between edge categories and present adaptive categorical diffusion to capture the structure diversity of multi-agent coordination. Leveraging this coordination structure, we define neighbor-dependent forward noise and develop anisotropic diffusion to enhance the action diversity of each agent. Extensive experiments across various multi-agent environments demonstrate that MCGD significantly outperforms existing state-of-the-art baselines in coordination performance and policy robustness in dynamic environments.} }
Endnote
%0 Conference Paper %T Graph Diffusion for Robust Multi-Agent Coordination %A Xianghua Zeng %A Hang Su %A Zhengyi Wang %A Zhiyuan Lin %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zeng25f %I PMLR %P 74157--74174 %U https://proceedings.mlr.press/v267/zeng25f.html %V 267 %X Offline multi-agent reinforcement learning (MARL) struggles to estimate out-of-distribution states and actions due to the absence of real-time environmental feedback. While diffusion models show promise in addressing these challenges, their application primarily focuses on independently diffusing the historical trajectories of individual agents, neglecting crucial multi-agent coordination dynamics and reducing policy robustness in dynamic environments. In this paper, we propose MCGD, a novel Multi-agent Coordination framework based on Graph Diffusion models to improve the effectiveness and robustness of collaborative policies. Specifically, we begin by constructing a sparse coordination graph that includes continuous node attributes and discrete edge attributes to effectively identify the underlying dynamics of multi-agent interactions. Next, we derive transition probabilities between edge categories and present adaptive categorical diffusion to capture the structure diversity of multi-agent coordination. Leveraging this coordination structure, we define neighbor-dependent forward noise and develop anisotropic diffusion to enhance the action diversity of each agent. Extensive experiments across various multi-agent environments demonstrate that MCGD significantly outperforms existing state-of-the-art baselines in coordination performance and policy robustness in dynamic environments.
APA
Zeng, X., Su, H., Wang, Z. & Lin, Z.. (2025). Graph Diffusion for Robust Multi-Agent Coordination. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:74157-74174 Available from https://proceedings.mlr.press/v267/zeng25f.html.

Related Material