EasyInv: Toward Fast and Better DDIM Inversion

Ziyue Zhang, Mingbao Lin, Shuicheng Yan, Rongrong Ji
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:75503-75512, 2025.

Abstract

This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model’s precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques. It can be easily combined with most existing inversion methods by only four lines of code. See code at https://github.com/potato-kitty/EasyInv.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhang25aw, title = {{E}asy{I}nv: Toward Fast and Better {DDIM} Inversion}, author = {Zhang, Ziyue and Lin, Mingbao and Yan, Shuicheng and Ji, Rongrong}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {75503--75512}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhang25aw/zhang25aw.pdf}, url = {https://proceedings.mlr.press/v267/zhang25aw.html}, abstract = {This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model’s precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques. It can be easily combined with most existing inversion methods by only four lines of code. See code at https://github.com/potato-kitty/EasyInv.} }
Endnote
%0 Conference Paper %T EasyInv: Toward Fast and Better DDIM Inversion %A Ziyue Zhang %A Mingbao Lin %A Shuicheng Yan %A Rongrong Ji %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhang25aw %I PMLR %P 75503--75512 %U https://proceedings.mlr.press/v267/zhang25aw.html %V 267 %X This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model’s precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques. It can be easily combined with most existing inversion methods by only four lines of code. See code at https://github.com/potato-kitty/EasyInv.
APA
Zhang, Z., Lin, M., Yan, S. & Ji, R.. (2025). EasyInv: Toward Fast and Better DDIM Inversion. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:75503-75512 Available from https://proceedings.mlr.press/v267/zhang25aw.html.

Related Material