Reward-Augmented Data Enhances Direct Preference Alignment of LLMs

Shenao Zhang, Zhihan Liu, Boyi Liu, Yufeng Zhang, Yingxiang Yang, Yongfei Liu, Liyu Chen, Tao Sun, Zhaoran Wang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:75591-75614, 2025.

Abstract

Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses, despite having access to preference data that includes reward scores from judge models during AI feedback. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to optimal responses that are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. The experiments across various benchmarks and diverse models demonstrate that our approach consistently boosts DPO by a considerable margin. Through comprehensive ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhang25az, title = {Reward-Augmented Data Enhances Direct Preference Alignment of {LLM}s}, author = {Zhang, Shenao and Liu, Zhihan and Liu, Boyi and Zhang, Yufeng and Yang, Yingxiang and Liu, Yongfei and Chen, Liyu and Sun, Tao and Wang, Zhaoran}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {75591--75614}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhang25az/zhang25az.pdf}, url = {https://proceedings.mlr.press/v267/zhang25az.html}, abstract = {Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses, despite having access to preference data that includes reward scores from judge models during AI feedback. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to optimal responses that are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. The experiments across various benchmarks and diverse models demonstrate that our approach consistently boosts DPO by a considerable margin. Through comprehensive ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.} }
Endnote
%0 Conference Paper %T Reward-Augmented Data Enhances Direct Preference Alignment of LLMs %A Shenao Zhang %A Zhihan Liu %A Boyi Liu %A Yufeng Zhang %A Yingxiang Yang %A Yongfei Liu %A Liyu Chen %A Tao Sun %A Zhaoran Wang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhang25az %I PMLR %P 75591--75614 %U https://proceedings.mlr.press/v267/zhang25az.html %V 267 %X Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses, despite having access to preference data that includes reward scores from judge models during AI feedback. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to optimal responses that are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. The experiments across various benchmarks and diverse models demonstrate that our approach consistently boosts DPO by a considerable margin. Through comprehensive ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
APA
Zhang, S., Liu, Z., Liu, B., Zhang, Y., Yang, Y., Liu, Y., Chen, L., Sun, T. & Wang, Z.. (2025). Reward-Augmented Data Enhances Direct Preference Alignment of LLMs. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:75591-75614 Available from https://proceedings.mlr.press/v267/zhang25az.html.

Related Material