Generalization Performance of Ensemble Clustering: From Theory to Algorithm

Xu Zhang, Haoye Qiu, Weixuan Liang, Hui Liu, Junhui Hou, Yuheng Jia
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:75901-75927, 2025.

Abstract

Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.0%, 7.3%, and 6.0% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhang25bl, title = {Generalization Performance of Ensemble Clustering: From Theory to Algorithm}, author = {Zhang, Xu and Qiu, Haoye and Liang, Weixuan and Liu, Hui and Hou, Junhui and Jia, Yuheng}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {75901--75927}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhang25bl/zhang25bl.pdf}, url = {https://proceedings.mlr.press/v267/zhang25bl.html}, abstract = {Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.0%, 7.3%, and 6.0% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.} }
Endnote
%0 Conference Paper %T Generalization Performance of Ensemble Clustering: From Theory to Algorithm %A Xu Zhang %A Haoye Qiu %A Weixuan Liang %A Hui Liu %A Junhui Hou %A Yuheng Jia %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhang25bl %I PMLR %P 75901--75927 %U https://proceedings.mlr.press/v267/zhang25bl.html %V 267 %X Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.0%, 7.3%, and 6.0% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.
APA
Zhang, X., Qiu, H., Liang, W., Liu, H., Hou, J. & Jia, Y.. (2025). Generalization Performance of Ensemble Clustering: From Theory to Algorithm. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:75901-75927 Available from https://proceedings.mlr.press/v267/zhang25bl.html.

Related Material