G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong Chen, Dawei Cheng
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:76678-76692, 2025.

Abstract

Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution? In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: (1) high-performing, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhang25cu, title = {G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks}, author = {Zhang, Guibin and Yue, Yanwei and Sun, Xiangguo and Wan, Guancheng and Yu, Miao and Fang, Junfeng and Wang, Kun and Chen, Tianlong and Cheng, Dawei}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {76678--76692}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhang25cu/zhang25cu.pdf}, url = {https://proceedings.mlr.press/v267/zhang25cu.html}, abstract = {Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution? In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: (1) high-performing, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.} }
Endnote
%0 Conference Paper %T G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks %A Guibin Zhang %A Yanwei Yue %A Xiangguo Sun %A Guancheng Wan %A Miao Yu %A Junfeng Fang %A Kun Wang %A Tianlong Chen %A Dawei Cheng %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhang25cu %I PMLR %P 76678--76692 %U https://proceedings.mlr.press/v267/zhang25cu.html %V 267 %X Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution? In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: (1) high-performing, achieving superior results on MMLU with accuracy at $84.50\%$ and on HumanEval with pass@1 at $89.90\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\%$ accuracy drop.
APA
Zhang, G., Yue, Y., Sun, X., Wan, G., Yu, M., Fang, J., Wang, K., Chen, T. & Cheng, D.. (2025). G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:76678-76692 Available from https://proceedings.mlr.press/v267/zhang25cu.html.

Related Material