[edit]
Gamma Distribution PCA-Enhanced Feature Learning for Angle-Robust SAR Target Recognition
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:76778-76794, 2025.
Abstract
Scattering characteristics of synthetic aperture radar (SAR) targets are typically related to observed azimuth and depression angles. However, in practice, it is difficult to obtain adequate training samples at all observation angles, which probably leads to poor robustness of deep networks. In this paper, we first propose a Gamma-Distribution Principal Component Analysis ($\Gamma$PCA) model that fully accounts for the statistical characteristics of SAR data. The $\Gamma$PCA derives consistent convolution kernels to effectively capture the angle-invariant features of the same target at various attitude angles, thus alleviating deep models’ sensitivity to angle changes in SAR target recognition task. We validate $\Gamma$PCA model based on two commonly used backbones, ResNet and ViT, and conduct multiple robustness experiments on the MSTAR benchmark dataset. The experimental results demonstrate that $\Gamma$PCA effectively enables the model to withstand substantial distributional discrepancy caused by angle changes. Additionally, $\Gamma$PCA convolution kernel is designed to require no parameter updates, introducing no extra computational burden to the network. The source code is available at https://github.com/ChGrey/GammaPCA.