[edit]
Retrieval-Augmented Language Model for Knowledge-aware Protein Encoding
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:76795-76810, 2025.
Abstract
Protein language models often struggle to capture biological functions due to their lack of factual knowledge (e.g., gene descriptions). Existing solutions leverage protein knowledge graphs (PKGs) as auxiliary pre-training objectives, but lack explicit integration of task-oriented knowledge, making them suffer from limited knowledge exploitation and catastrophic forgetting. The root cause is that they fail to align PKGs with task-specific data, forcing their knowledge modeling to adapt to the knowledge-isolated nature of downstream tasks. In this paper, we propose Knowledge-aware retrieval augmented protein language model (Kara), achieving the first task-oriented and explicit integration of PKGs and protein language models. With a knowledge retriever learning to predict linkages between PKG and task proteins, Kara unifies the knowledge integration of the pre-training and fine-tuning stages with a structure-based regularization, mitigating catastrophic forgetting. To ensure task-oriented integration, Kara uses contextualized virtual tokens to extract graph context as task-specific knowledge for new proteins. Experiments show that Kara outperforms existing knowledge-enhanced models in 6 representative tasks, achieving on average 5.1% improvements.