[edit]
Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:76831-76879, 2025.
Abstract
Active learning methods aim to improve sample complexity in machine learning. In this work, we investigate an active learning scheme via a novel gradient-free cutting-plane training method for ReLU networks of arbitrary depth and develop a convergence theory. We demonstrate, for the first time, that cutting-plane algorithms, traditionally used in linear models, can be extended to deep neural networks despite their nonconvexity and nonlinear decision boundaries. Moreover, this training method induces the first deep active learning scheme known to achieve convergence guarantees, revealing a geometric contraction rate of the feasible set. We exemplify the effectiveness of our proposed active learning method against popular deep active learning baselines via both synthetic data experiments and sentimental classification task on real datasets.