Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models

Jialin Zhao, Yingtao Zhang, Carlo Vittorio Cannistraci
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:77926-77947, 2025.

Abstract

The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhao25af, title = {Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models}, author = {Zhao, Jialin and Zhang, Yingtao and Cannistraci, Carlo Vittorio}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {77926--77947}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhao25af/zhao25af.pdf}, url = {https://proceedings.mlr.press/v267/zhao25af.html}, abstract = {The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.} }
Endnote
%0 Conference Paper %T Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models %A Jialin Zhao %A Yingtao Zhang %A Carlo Vittorio Cannistraci %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhao25af %I PMLR %P 77926--77947 %U https://proceedings.mlr.press/v267/zhao25af.html %V 267 %X The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.
APA
Zhao, J., Zhang, Y. & Cannistraci, C.V.. (2025). Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:77926-77947 Available from https://proceedings.mlr.press/v267/zhao25af.html.

Related Material