Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation

Bowen Zheng, Tianming Yang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:78434-78453, 2025.

Abstract

Diffusion distillation is a widely used technique to reduce the sampling cost of diffusion models, yet it often requires extensive training, and the student performance tends to be degraded. Recent studies show that incorporating a GAN objective may alleviate these issues, yet the underlying mechanism remains unclear. In this work, we first identify a key limitation of distillation: mismatched step sizes and parameter numbers between the teacher and the student model lead them to converge to different local minima, rendering direct imitation suboptimal. We further demonstrate that a standalone GAN objective, without relying a distillation loss, overcomes this limitation and is sufficient to convert diffusion models into efficient one-step generators. Based on this finding, we propose that diffusion training may be viewed as a form of generative pre-training, equipping models with capabilities that can be unlocked through lightweight GAN fine-tuning. Supporting this view, we create a one-step generation model by fine-tuning a pre-trained model with 85% of parameters frozen, achieving strong performance with only 0.2M images and near-SOTA results with 5M images. We further present a frequency-domain analysis that may explain the one-step generative capability gained in diffusion training. Overall, our work provides a new perspective for diffusion training, highlighting its role as a powerful generative pre-training process, which can be the basis for building efficient one-step generation models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zheng25r, title = {Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation}, author = {Zheng, Bowen and Yang, Tianming}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {78434--78453}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zheng25r/zheng25r.pdf}, url = {https://proceedings.mlr.press/v267/zheng25r.html}, abstract = {Diffusion distillation is a widely used technique to reduce the sampling cost of diffusion models, yet it often requires extensive training, and the student performance tends to be degraded. Recent studies show that incorporating a GAN objective may alleviate these issues, yet the underlying mechanism remains unclear. In this work, we first identify a key limitation of distillation: mismatched step sizes and parameter numbers between the teacher and the student model lead them to converge to different local minima, rendering direct imitation suboptimal. We further demonstrate that a standalone GAN objective, without relying a distillation loss, overcomes this limitation and is sufficient to convert diffusion models into efficient one-step generators. Based on this finding, we propose that diffusion training may be viewed as a form of generative pre-training, equipping models with capabilities that can be unlocked through lightweight GAN fine-tuning. Supporting this view, we create a one-step generation model by fine-tuning a pre-trained model with 85% of parameters frozen, achieving strong performance with only 0.2M images and near-SOTA results with 5M images. We further present a frequency-domain analysis that may explain the one-step generative capability gained in diffusion training. Overall, our work provides a new perspective for diffusion training, highlighting its role as a powerful generative pre-training process, which can be the basis for building efficient one-step generation models.} }
Endnote
%0 Conference Paper %T Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation %A Bowen Zheng %A Tianming Yang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zheng25r %I PMLR %P 78434--78453 %U https://proceedings.mlr.press/v267/zheng25r.html %V 267 %X Diffusion distillation is a widely used technique to reduce the sampling cost of diffusion models, yet it often requires extensive training, and the student performance tends to be degraded. Recent studies show that incorporating a GAN objective may alleviate these issues, yet the underlying mechanism remains unclear. In this work, we first identify a key limitation of distillation: mismatched step sizes and parameter numbers between the teacher and the student model lead them to converge to different local minima, rendering direct imitation suboptimal. We further demonstrate that a standalone GAN objective, without relying a distillation loss, overcomes this limitation and is sufficient to convert diffusion models into efficient one-step generators. Based on this finding, we propose that diffusion training may be viewed as a form of generative pre-training, equipping models with capabilities that can be unlocked through lightweight GAN fine-tuning. Supporting this view, we create a one-step generation model by fine-tuning a pre-trained model with 85% of parameters frozen, achieving strong performance with only 0.2M images and near-SOTA results with 5M images. We further present a frequency-domain analysis that may explain the one-step generative capability gained in diffusion training. Overall, our work provides a new perspective for diffusion training, highlighting its role as a powerful generative pre-training process, which can be the basis for building efficient one-step generation models.
APA
Zheng, B. & Yang, T.. (2025). Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:78434-78453 Available from https://proceedings.mlr.press/v267/zheng25r.html.

Related Material