Enhancing Statistical Validity and Power in Hybrid Controlled Trials: A Randomization Inference Approach with Conformal Selective Borrowing

Ke Zhu, Shu Yang, Xiaofei Wang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:80282-80309, 2025.

Abstract

External controls from historical trials or observational data can augment randomized controlled trials when large-scale randomization is impractical or unethical, such as in drug evaluation for rare diseases. However, non-randomized external controls can introduce biases, and existing Bayesian and frequentist methods may inflate the type I error rate, particularly in small-sample trials where external data borrowing is most critical. To address these challenges, we propose a randomization inference framework that ensures finite-sample exact and model-free type I error rate control, adhering to the “analyze as you randomize” principle to safeguard against hidden biases. Recognizing that biased external controls reduce the power of randomization tests, we leverage conformal inference to develop an individualized test-then-pool procedure that selectively borrows comparable external controls to improve power. Our approach incorporates selection uncertainty into randomization tests, providing valid post-selection inference. Additionally, we propose an adaptive procedure to optimize the selection threshold by minimizing the mean squared error across a class of estimators encompassing both no-borrowing and full-borrowing approaches. The proposed methods are supported by non-asymptotic theoretical analysis, validated through simulations, and applied to a randomized lung cancer trial that integrates external controls from the National Cancer Database.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-zhu25y, title = {Enhancing Statistical Validity and Power in Hybrid Controlled Trials: A Randomization Inference Approach with Conformal Selective Borrowing}, author = {Zhu, Ke and Yang, Shu and Wang, Xiaofei}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {80282--80309}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/zhu25y/zhu25y.pdf}, url = {https://proceedings.mlr.press/v267/zhu25y.html}, abstract = {External controls from historical trials or observational data can augment randomized controlled trials when large-scale randomization is impractical or unethical, such as in drug evaluation for rare diseases. However, non-randomized external controls can introduce biases, and existing Bayesian and frequentist methods may inflate the type I error rate, particularly in small-sample trials where external data borrowing is most critical. To address these challenges, we propose a randomization inference framework that ensures finite-sample exact and model-free type I error rate control, adhering to the “analyze as you randomize” principle to safeguard against hidden biases. Recognizing that biased external controls reduce the power of randomization tests, we leverage conformal inference to develop an individualized test-then-pool procedure that selectively borrows comparable external controls to improve power. Our approach incorporates selection uncertainty into randomization tests, providing valid post-selection inference. Additionally, we propose an adaptive procedure to optimize the selection threshold by minimizing the mean squared error across a class of estimators encompassing both no-borrowing and full-borrowing approaches. The proposed methods are supported by non-asymptotic theoretical analysis, validated through simulations, and applied to a randomized lung cancer trial that integrates external controls from the National Cancer Database.} }
Endnote
%0 Conference Paper %T Enhancing Statistical Validity and Power in Hybrid Controlled Trials: A Randomization Inference Approach with Conformal Selective Borrowing %A Ke Zhu %A Shu Yang %A Xiaofei Wang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-zhu25y %I PMLR %P 80282--80309 %U https://proceedings.mlr.press/v267/zhu25y.html %V 267 %X External controls from historical trials or observational data can augment randomized controlled trials when large-scale randomization is impractical or unethical, such as in drug evaluation for rare diseases. However, non-randomized external controls can introduce biases, and existing Bayesian and frequentist methods may inflate the type I error rate, particularly in small-sample trials where external data borrowing is most critical. To address these challenges, we propose a randomization inference framework that ensures finite-sample exact and model-free type I error rate control, adhering to the “analyze as you randomize” principle to safeguard against hidden biases. Recognizing that biased external controls reduce the power of randomization tests, we leverage conformal inference to develop an individualized test-then-pool procedure that selectively borrows comparable external controls to improve power. Our approach incorporates selection uncertainty into randomization tests, providing valid post-selection inference. Additionally, we propose an adaptive procedure to optimize the selection threshold by minimizing the mean squared error across a class of estimators encompassing both no-borrowing and full-borrowing approaches. The proposed methods are supported by non-asymptotic theoretical analysis, validated through simulations, and applied to a randomized lung cancer trial that integrates external controls from the National Cancer Database.
APA
Zhu, K., Yang, S. & Wang, X.. (2025). Enhancing Statistical Validity and Power in Hybrid Controlled Trials: A Randomization Inference Approach with Conformal Selective Borrowing. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:80282-80309 Available from https://proceedings.mlr.press/v267/zhu25y.html.

Related Material