[edit]

Volume 269: Learning on Graphs Conference, 26-29 November 2024, Virtual

[edit]

Editors: Guy Wolf, Smita Krishnaswamy

[bib][citeproc]

Contents:

Oral Presentations

Revisiting Graph Homophily Measures

Mikhail Mironov, Liudmila Prokhorenkova; Proceedings of the Third Learning on Graphs Conference, PMLR 269:1:1-1:22

UnRavL: A Neuro-Symbolic Framework for Answering Graph Pattern Queries in Knowledge Graphs

Tamara Cucumides, Daniel Daza, Pablo Barcelo, Michael Cochez, Floris Geerts, Juan L Reutter, Miguel Romero Orth; Proceedings of the Third Learning on Graphs Conference, PMLR 269:2:1-2:23

Towards a General Recipe for Combinatorial Optimization With Multi-Filter GNNs

Frederik Wenkel, Semih Cantürk, Stefan Horoi, Michael Perlmutter, Guy Wolf; Proceedings of the Third Learning on Graphs Conference, PMLR 269:3:1-3:20

Decomposing Force Fields as Flows on Graphs Reconstructed From Stochastic Trajectories

Ramón Dineth Nartallo-Kaluarachchi, Paul Expert, David Beers, Alexander Strang, Morten L Kringelbach, Renaud Lambiotte, Alain Goriely; Proceedings of the Third Learning on Graphs Conference, PMLR 269:4:1-4:26

Poster Presentations

What Do GNNs Actually Learn? Towards Understanding Their Representations

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis; Proceedings of the Third Learning on Graphs Conference, PMLR 269:5:1-5:21

Ising on the Graph: Task-Specific Graph Subsampling via the Ising Model

Maria Bånkestad, Jennifer R. Andersson, Sebastian Mair, Jens Sjölund; Proceedings of the Third Learning on Graphs Conference, PMLR 269:6:1-6:29

Reinforcement Learning Discovers Efficient Decentralized Graph Path Search Strategies

Alexei Pisacane, Victor-Alexandru Darvariu, Mirco Musolesi; Proceedings of the Third Learning on Graphs Conference, PMLR 269:7:1-7:14

Cayley Graph Propagation

JJ Wilson, Maya Bechler-Speicher, Petar Veličković; Proceedings of the Third Learning on Graphs Conference, PMLR 269:8:1-8:20

A Spectral Framework for Tracking Communities in Evolving Networks

Jacob Hume, Laura Balzano; Proceedings of the Third Learning on Graphs Conference, PMLR 269:9:1-9:34

Simple GNNs With Low Rank Non-Parametric Aggregators

Luciano Vinas, Arash A. Amini; Proceedings of the Third Learning on Graphs Conference, PMLR 269:10:1-10:11

Edge-Splitting MLP: Node Classification on Homophilic and Heterophilic Graphs Without Message Passing

Matthias Kohn, Marcel Hoffmann, Ansgar Scherp; Proceedings of the Third Learning on Graphs Conference, PMLR 269:11:1-11:21

TRIX: A More Expressive Model for Zero-Shot Domain Transfer in Knowledge Graphs

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, Bruno Ribeiro; Proceedings of the Third Learning on Graphs Conference, PMLR 269:12:1-12:28

Asymptotic Generalization Error of a Single-Layer Graph Convolutional Network

O Duranthon, Lenka Zdeborova; Proceedings of the Third Learning on Graphs Conference, PMLR 269:13:1-13:27

Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph

Andreas Roth, Franka Bause, Nils Morten Kriege, Thomas Liebig; Proceedings of the Third Learning on Graphs Conference, PMLR 269:14:1-14:24

Effectiveness of SDP Rounding Using Hopfield Networks

Éanna Curran, Saurabh Ray, Deepak Ajwani; Proceedings of the Third Learning on Graphs Conference, PMLR 269:15:1-15:18

xAI-Drop: Don’t Use What You Cannot Explain

Vincenzo Marco De Luca, Antonio Longa, Pietro Lio, Andrea Passerini; Proceedings of the Third Learning on Graphs Conference, PMLR 269:16:1-16:22

Understanding Feature/Structure Interplay in Graph Neural Networks

Diana Gomes, Ann Nowe, Peter Vrancx; Proceedings of the Third Learning on Graphs Conference, PMLR 269:17:1-17:15

Knowledge Graph Preference Contrastive Learning for Recommendation

Junze Zhu, Zhongyi Hu, Fan Zhang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:18:1-18:15

DF-GNN: Dynamic Fusion Framework for Attention Graph Neural Networks on GPUs

Jiahui Liu, Zhenkun Cai, Zhiyong Chen, Minjie Wang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:19:1-19:13

GraTeD-MLP: Efficient Node Classification via Graph Transformer Distillation to MLP

Sarthak Malik, Aditi Rai, Ram Ganesh V, Himank Sehgal, Akshay Sethi, Aakarsh Malhotra; Proceedings of the Third Learning on Graphs Conference, PMLR 269:20:1-20:15

Optimal Performance of Graph Convolutional Networks on the Contextual Stochastic Block Model

Guillaume Dalle, Patrick Thiran; Proceedings of the Third Learning on Graphs Conference, PMLR 269:21:1-21:17

Leveraging Temporal Graph Networks Using Module Decoupling

Or Feldman, Chaim Baskin; Proceedings of the Third Learning on Graphs Conference, PMLR 269:22:1-22:19

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Kaan Sancak, Muhammed Fatih Balin, Umit Catalyurek; Proceedings of the Third Learning on Graphs Conference, PMLR 269:23:1-23:19

A Pure Transformer Pretraining Framework on Text-Attributed Graphs

Yu Song, Haitao Mao, Jiachen Xiao, Jingzhe Liu, Zhikai Chen, Wei Jin, Carl Yang, Jiliang Tang, Hui Liu; Proceedings of the Third Learning on Graphs Conference, PMLR 269:24:1-24:18

Hyperbolic Kernel Convolution: A Generic Framework

Eric Qu, Lige Zhang, Habib Debaya, Yue Wu, Dongmian Zou; Proceedings of the Third Learning on Graphs Conference, PMLR 269:25:1-25:25

Faster Optimization on Sparse Graphs via Neural Reparametrization

Csaba Both, Nima Dehmamy, Jianzhi Long, Rose Yu; Proceedings of the Third Learning on Graphs Conference, PMLR 269:26:1-26:21

NP-NDS: A Nature-Powered Nonlinear Dynamical System for Power Grid Forecasting

Chunshu Wu, Ruibing Song, Chuan Liu, Yuqing Wang, Yousu Chen, Ang Li, Dongfang Liu, Ying Nian Wu, Michael Huang, Tong Geng; Proceedings of the Third Learning on Graphs Conference, PMLR 269:27:1-27:14

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs

Shenyang Huang, Farimah Poursafaei, Reihaneh Rabbany, Guillaume Rabusseau, Emanuele Rossi; Proceedings of the Third Learning on Graphs Conference, PMLR 269:28:1-28:16

Flexible Diffusion Scopes With Parameterized Laplacian for Heterophilic Graph Learning

Qincheng Lu, Jiaqi Zhu, Sitao Luan, Xiao-Wen Chang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:29:1-29:20

Oversquashing in Hypergraph Neural Networks

Naganand Yadati; Proceedings of the Third Learning on Graphs Conference, PMLR 269:30:1-30:16

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Maysam Behmanesh, Maks Ovsjanikov; Proceedings of the Third Learning on Graphs Conference, PMLR 269:31:1-31:26

Stochastic Experience-Replay for Graph Continual Learning

Arnab Kumar Mondal, Jay Nandy, Manohar Kaul, Mahesh Chandran; Proceedings of the Third Learning on Graphs Conference, PMLR 269:32:1-32:16

Enhancing Topological Dependencies in Spatio-Temporal Graphs With Cycle Message Passing Blocks

Minho Lee, Yun Young Choi, Sun Woo Park, Seunghwan Lee, Joohwan Ko, Jaeyoung Hong; Proceedings of the Third Learning on Graphs Conference, PMLR 269:33:1-33:17

Matrix Completion With Hypergraphs: Sharp Thresholds and Efficient Algorithms

Zhongtian Ma, Qiaosheng Zhang, Zhen Wang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:34:1-34:30

Do Neural Scaling Laws Exist on Graph Self-Supervised Learning?

Qian Ma, Haitao Mao, Jingzhe Liu, Zhehua Zhang, Chunlin Feng, Yu Song, Yihan Shao, Yao Ma; Proceedings of the Third Learning on Graphs Conference, PMLR 269:35:1-35:24

Sub-Graph Based Diffusion Model for Link Prediction

Hang Li, Wei Jin, Geri Skenderi, Harry Shomer, Wenzhuo Tang, Wenqi Fan, Jiliang Tang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:36:1-36:17

Multi-Scale High-Resolution Logarithmic Grapher Module for Efficient Vision GNNs

Mustafa Munir, Alex Zhang, Radu Marculescu; Proceedings of the Third Learning on Graphs Conference, PMLR 269:37:1-37:13

CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction

Shrimon Mukherjee, Madhusudan Ghosh, Partha Basuchowdhuri; Proceedings of the Third Learning on Graphs Conference, PMLR 269:38:1-38:19

Scalable and Efficient Temporal Graph Representation Learning via Forward Recent Sampling

Yuhong Luo, Pan Li; Proceedings of the Third Learning on Graphs Conference, PMLR 269:39:1-39:20

T-Gae: Transferable Graph Autoencoder for Network Alignment

Jiashu He, Charilaos Kanatsoulis, Alejandro Ribeiro; Proceedings of the Third Learning on Graphs Conference, PMLR 269:40:1-40:25

Motif-Aware Attribute Masking for Molecular Graph Pre-Training

Eric Inae, Gang Liu, Meng Jiang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:41:1-41:15

On the Expressivity of Persistent Homology in Graph Learning

Rubén Ballester, Bastian Rieck; Proceedings of the Third Learning on Graphs Conference, PMLR 269:42:1-42:31

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Kay Liu, Hengrui Zhang, Ziqing Hu, Fangxin Wang, Philip S. Yu; Proceedings of the Third Learning on Graphs Conference, PMLR 269:43:1-43:20

Towards Neural Scaling Laws on Graphs

Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, Jiliang Tang; Proceedings of the Third Learning on Graphs Conference, PMLR 269:44:1-44:22

CliquePH: Higher-Order Information for Graph Neural Networks Through Persistent Homology on Clique Graphs

Davide Buffelli, Farzin Soleymani, Bastian Rieck; Proceedings of the Third Learning on Graphs Conference, PMLR 269:45:1-45:17

Lifted Model Construction Without Normalisation: A Vectorised Approach to Exploit Symmetries in Factor Graphs

Malte Luttermann, Ralf Möller, Marcel Gehrke; Proceedings of the Third Learning on Graphs Conference, PMLR 269:46:1-46:17

Dynamic Representations of Global Crises: A Temporal Knowledge Graph for Conflicts, Trade and Value Networks

Julia Gastinger, Timo Sztyler, Nils Steinert, Sabine Gründer-Fahrer, Michael Martin, Anett Schuelke, Heiner Stuckenschmidt; Proceedings of the Third Learning on Graphs Conference, PMLR 269:47:1-47:22

subscribe via RSS