[edit]
RiEMann: Near Real-Time SE(3)-Equivariant Robot Manipulation without Point Cloud Segmentation
Proceedings of The 8th Conference on Robot Learning, PMLR 270:2164-2182, 2025.
Abstract
We present RiEMann, an end-to-end near Real-time SE(3)-Equivariant Robot Manipulation imitation learning framework from scene point cloud input. Compared to previous methods that rely on descriptor field matching, RiEMann directly predicts the target actions for manipulation without any object segmentation. RiEMann can efficiently train the visuomotor policy from scratch with 5 to 10 demonstrations for a manipulation task, generalizes to unseen SE(3) transformations and instances of target objects, resists visual interference of distracting objects, and follows the near real-time pose change of the target object. The scalable SE(3)-equivariant action space of RiEMann supports both pick-and-place tasks and articulated object manipulation tasks. In simulation and real-world 6-DOF robot manipulation experiments, we test RiEMann on 5 categories of manipulation tasks with a total of 25 variants and show that RiEMann outperforms baselines in both task success rates and SE(3) geodesic distance errors (reduced by 68.6%), and achieves 5.4 frames per second (fps) network inference speed.