A Model for Combinatorial Dictionary Learning and Inference

Avrim Blum, Kavya Ravichandran
Proceedings of The 36th International Conference on Algorithmic Learning Theory, PMLR 272:246-288, 2025.

Abstract

We are often interested in decomposing complex, structured data into simple components that explain the data. The linear version of this problem is well-studied as dictionary learning and factor analysis. In this work, we propose a combinatorial model in which to study this question, motivated by the way objects occlude each other in a scene to form an image. First, we identify a property we call “well-structuredness” of a set of low-dimensional components which ensures that no two components in the set are too similar. We show how well-structuredness is sufficient for learning the set of latent components comprising a set of sample instances. We then consider the problem: given a set of components and an instance generated from some unknown subset of them, identify which parts of the instance arise from which components. We consider two variants: (1) determine the minimal number of components required to explain the instance; (2) determine the correct explanation for as many locations as possible. For the latter goal, we also devise a version that is robust to adversarial corruptions, with just a slightly stronger assumption on the components. Finally, we show that the learning problem is computationally infeasible in the absence of any assumptions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v272-blum25b, title = {A Model for Combinatorial Dictionary Learning and Inference}, author = {Blum, Avrim and Ravichandran, Kavya}, booktitle = {Proceedings of The 36th International Conference on Algorithmic Learning Theory}, pages = {246--288}, year = {2025}, editor = {Kamath, Gautam and Loh, Po-Ling}, volume = {272}, series = {Proceedings of Machine Learning Research}, month = {24--27 Feb}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v272/main/assets/blum25b/blum25b.pdf}, url = {https://proceedings.mlr.press/v272/blum25b.html}, abstract = {We are often interested in decomposing complex, structured data into simple components that explain the data. The linear version of this problem is well-studied as dictionary learning and factor analysis. In this work, we propose a combinatorial model in which to study this question, motivated by the way objects occlude each other in a scene to form an image. First, we identify a property we call “well-structuredness” of a set of low-dimensional components which ensures that no two components in the set are too similar. We show how well-structuredness is sufficient for learning the set of latent components comprising a set of sample instances. We then consider the problem: given a set of components and an instance generated from some unknown subset of them, identify which parts of the instance arise from which components. We consider two variants: (1) determine the minimal number of components required to explain the instance; (2) determine the correct explanation for as many locations as possible. For the latter goal, we also devise a version that is robust to adversarial corruptions, with just a slightly stronger assumption on the components. Finally, we show that the learning problem is computationally infeasible in the absence of any assumptions.} }
Endnote
%0 Conference Paper %T A Model for Combinatorial Dictionary Learning and Inference %A Avrim Blum %A Kavya Ravichandran %B Proceedings of The 36th International Conference on Algorithmic Learning Theory %C Proceedings of Machine Learning Research %D 2025 %E Gautam Kamath %E Po-Ling Loh %F pmlr-v272-blum25b %I PMLR %P 246--288 %U https://proceedings.mlr.press/v272/blum25b.html %V 272 %X We are often interested in decomposing complex, structured data into simple components that explain the data. The linear version of this problem is well-studied as dictionary learning and factor analysis. In this work, we propose a combinatorial model in which to study this question, motivated by the way objects occlude each other in a scene to form an image. First, we identify a property we call “well-structuredness” of a set of low-dimensional components which ensures that no two components in the set are too similar. We show how well-structuredness is sufficient for learning the set of latent components comprising a set of sample instances. We then consider the problem: given a set of components and an instance generated from some unknown subset of them, identify which parts of the instance arise from which components. We consider two variants: (1) determine the minimal number of components required to explain the instance; (2) determine the correct explanation for as many locations as possible. For the latter goal, we also devise a version that is robust to adversarial corruptions, with just a slightly stronger assumption on the components. Finally, we show that the learning problem is computationally infeasible in the absence of any assumptions.
APA
Blum, A. & Ravichandran, K.. (2025). A Model for Combinatorial Dictionary Learning and Inference. Proceedings of The 36th International Conference on Algorithmic Learning Theory, in Proceedings of Machine Learning Research 272:246-288 Available from https://proceedings.mlr.press/v272/blum25b.html.

Related Material