[edit]
Online Learning of Quantum States with Logarithmic Loss via VB-FTRL
Proceedings of The 36th International Conference on Algorithmic Learning Theory, PMLR 272:1285-1312, 2025.
Abstract
Online learning of quantum states with the logarithmic loss (LL-OLQS) is a quantum generalization of online portfolio selection (OPS), a classic open problem in online learning for over three decades. This problem also emerges in designing stochastic optimization algorithms for maximum-likelihood quantum state tomography. Recently, Jezequel et al. (2022, arXiv:2209.13932) proposed the VB-FTRL algorithm, the first regret-optimal algorithm for OPS with moderate computational complexity. In this paper, we generalize VB-FTRL for LL-OLQS. Let d denote the dimension and T the number of rounds. The generalized algorithm achieves a regret rate of O(d2log(d+T)) for LL-OLQS. Each iteration of the algorithm consists of solving a semidefinite program that can be implemented in polynomial time by, for example, cutting-plane methods. For comparison, the best-known regret rate for LL-OLQS is currently O(d2logT), achieved by an exponential weight method. However, no explicit implementation is available for the exponential weight method for LL-OLQS. To facilitate the generalization, we introduce the notion of VB-convexity. VB-convexity is a sufficient condition for the volumetric barrier associated with any function to be convex and is of independent interest.