Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning

Thomas De Min, Massimiliano Mancini, Stéphane Lathuilière, Subhankar Roy, Elisa Ricci
Proceedings of The 3rd Conference on Lifelong Learning Agents, PMLR 274:852-868, 2025.

Abstract

Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane

Cite this Paper


BibTeX
@InProceedings{pmlr-v274-min25a, title = {Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning}, author = {Min, Thomas De and Mancini, Massimiliano and Lathuili{\`{e}}re, St{\'{e}}phane and Roy, Subhankar and Ricci, Elisa}, booktitle = {Proceedings of The 3rd Conference on Lifelong Learning Agents}, pages = {852--868}, year = {2025}, editor = {Lomonaco, Vincenzo and Melacci, Stefano and Tuytelaars, Tinne and Chandar, Sarath and Pascanu, Razvan}, volume = {274}, series = {Proceedings of Machine Learning Research}, month = {29 Jul--01 Aug}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v274/main/assets/min25a/min25a.pdf}, url = {https://proceedings.mlr.press/v274/min25a.html}, abstract = {Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane} }
Endnote
%0 Conference Paper %T Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning %A Thomas De Min %A Massimiliano Mancini %A Stéphane Lathuilière %A Subhankar Roy %A Elisa Ricci %B Proceedings of The 3rd Conference on Lifelong Learning Agents %C Proceedings of Machine Learning Research %D 2025 %E Vincenzo Lomonaco %E Stefano Melacci %E Tinne Tuytelaars %E Sarath Chandar %E Razvan Pascanu %F pmlr-v274-min25a %I PMLR %P 852--868 %U https://proceedings.mlr.press/v274/min25a.html %V 274 %X Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane
APA
Min, T.D., Mancini, M., Lathuilière, S., Roy, S. & Ricci, E.. (2025). Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning. Proceedings of The 3rd Conference on Lifelong Learning Agents, in Proceedings of Machine Learning Research 274:852-868 Available from https://proceedings.mlr.press/v274/min25a.html.

Related Material