Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures

James Bergstra, Daniel Yamins, David Cox
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(1):115-123, 2013.

Abstract

Many computer vision algorithms depend on configuration settings that are typically hand-tuned in the course of evaluating the algorithm for a particular data set. While such parameter tuning is often presented as being incidental to the algorithm, correctly setting these parameter choices is frequently critical to realizing a method’s full potential. Compounding matters, these parameters often must be re-tuned when the algorithm is applied to a new problem domain, and the tuning process itself often depends on personal experience and intuition in ways that are hard to quantify or describe. Since the performance of a given technique depends on both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a given technique is genuinely better, or simply better tuned. In this work, we propose a meta-modeling approach to support automated hyperparameter optimization, with the goal of providing practical tools that replace hand-tuning with a reproducible and unbiased optimization process. Our approach is to expose the underlying expression graph of how a performance metric (e.g. classification accuracy on validation examples) is computed from hyperparameters that govern not only how individual processing steps are applied, but even which processing steps are included. A hyperparameter optimization algorithm transforms this graph into a program for optimizing that performance metric. Our approach yields state of the art results on three disparate computer vision problems: a face-matching verification task (LFW), a face identification task (PubFig83) and an object recognition task (CIFAR-10), using a single broad class of feed-forward vision architectures.

Cite this Paper


BibTeX
@InProceedings{pmlr-v28-bergstra13, title = {Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures}, author = {Bergstra, James and Yamins, Daniel and Cox, David}, booktitle = {Proceedings of the 30th International Conference on Machine Learning}, pages = {115--123}, year = {2013}, editor = {Dasgupta, Sanjoy and McAllester, David}, volume = {28}, number = {1}, series = {Proceedings of Machine Learning Research}, address = {Atlanta, Georgia, USA}, month = {17--19 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v28/bergstra13.pdf}, url = {https://proceedings.mlr.press/v28/bergstra13.html}, abstract = {Many computer vision algorithms depend on configuration settings that are typically hand-tuned in the course of evaluating the algorithm for a particular data set. While such parameter tuning is often presented as being incidental to the algorithm, correctly setting these parameter choices is frequently critical to realizing a method’s full potential. Compounding matters, these parameters often must be re-tuned when the algorithm is applied to a new problem domain, and the tuning process itself often depends on personal experience and intuition in ways that are hard to quantify or describe. Since the performance of a given technique depends on both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a given technique is genuinely better, or simply better tuned. In this work, we propose a meta-modeling approach to support automated hyperparameter optimization, with the goal of providing practical tools that replace hand-tuning with a reproducible and unbiased optimization process. Our approach is to expose the underlying expression graph of how a performance metric (e.g. classification accuracy on validation examples) is computed from hyperparameters that govern not only how individual processing steps are applied, but even which processing steps are included. A hyperparameter optimization algorithm transforms this graph into a program for optimizing that performance metric. Our approach yields state of the art results on three disparate computer vision problems: a face-matching verification task (LFW), a face identification task (PubFig83) and an object recognition task (CIFAR-10), using a single broad class of feed-forward vision architectures. } }
Endnote
%0 Conference Paper %T Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures %A James Bergstra %A Daniel Yamins %A David Cox %B Proceedings of the 30th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2013 %E Sanjoy Dasgupta %E David McAllester %F pmlr-v28-bergstra13 %I PMLR %P 115--123 %U https://proceedings.mlr.press/v28/bergstra13.html %V 28 %N 1 %X Many computer vision algorithms depend on configuration settings that are typically hand-tuned in the course of evaluating the algorithm for a particular data set. While such parameter tuning is often presented as being incidental to the algorithm, correctly setting these parameter choices is frequently critical to realizing a method’s full potential. Compounding matters, these parameters often must be re-tuned when the algorithm is applied to a new problem domain, and the tuning process itself often depends on personal experience and intuition in ways that are hard to quantify or describe. Since the performance of a given technique depends on both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a given technique is genuinely better, or simply better tuned. In this work, we propose a meta-modeling approach to support automated hyperparameter optimization, with the goal of providing practical tools that replace hand-tuning with a reproducible and unbiased optimization process. Our approach is to expose the underlying expression graph of how a performance metric (e.g. classification accuracy on validation examples) is computed from hyperparameters that govern not only how individual processing steps are applied, but even which processing steps are included. A hyperparameter optimization algorithm transforms this graph into a program for optimizing that performance metric. Our approach yields state of the art results on three disparate computer vision problems: a face-matching verification task (LFW), a face identification task (PubFig83) and an object recognition task (CIFAR-10), using a single broad class of feed-forward vision architectures.
RIS
TY - CPAPER TI - Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures AU - James Bergstra AU - Daniel Yamins AU - David Cox BT - Proceedings of the 30th International Conference on Machine Learning DA - 2013/02/13 ED - Sanjoy Dasgupta ED - David McAllester ID - pmlr-v28-bergstra13 PB - PMLR DP - Proceedings of Machine Learning Research VL - 28 IS - 1 SP - 115 EP - 123 L1 - http://proceedings.mlr.press/v28/bergstra13.pdf UR - https://proceedings.mlr.press/v28/bergstra13.html AB - Many computer vision algorithms depend on configuration settings that are typically hand-tuned in the course of evaluating the algorithm for a particular data set. While such parameter tuning is often presented as being incidental to the algorithm, correctly setting these parameter choices is frequently critical to realizing a method’s full potential. Compounding matters, these parameters often must be re-tuned when the algorithm is applied to a new problem domain, and the tuning process itself often depends on personal experience and intuition in ways that are hard to quantify or describe. Since the performance of a given technique depends on both the fundamental quality of the algorithm and the details of its tuning, it is sometimes difficult to know whether a given technique is genuinely better, or simply better tuned. In this work, we propose a meta-modeling approach to support automated hyperparameter optimization, with the goal of providing practical tools that replace hand-tuning with a reproducible and unbiased optimization process. Our approach is to expose the underlying expression graph of how a performance metric (e.g. classification accuracy on validation examples) is computed from hyperparameters that govern not only how individual processing steps are applied, but even which processing steps are included. A hyperparameter optimization algorithm transforms this graph into a program for optimizing that performance metric. Our approach yields state of the art results on three disparate computer vision problems: a face-matching verification task (LFW), a face identification task (PubFig83) and an object recognition task (CIFAR-10), using a single broad class of feed-forward vision architectures. ER -
APA
Bergstra, J., Yamins, D. & Cox, D.. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Proceedings of the 30th International Conference on Machine Learning, in Proceedings of Machine Learning Research 28(1):115-123 Available from https://proceedings.mlr.press/v28/bergstra13.html.

Related Material