You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time

Xiaotian Han, Tianlong Chen, Kaixiong Zhou, Zhimeng Jiang, Zhangyang Wang, Xia Hu
Conference on Parsimony and Learning, PMLR 280:780-809, 2025.

Abstract

Deep neural networks are prone to various bias issues, jeopardizing their applications for high-stake decision-making. Existing fairness methods typically offer a fixed accuracy-fairness trade-off, since the weight of the well-trained model is a fixed point (fairness-optimum) in the weight space. Nevertheless, more flexible accuracy-fairness trade-offs at inference time are practically desired since: 1) stakes of the same downstream task can vary for different individuals, and 2) different regions have diverse laws or regularization for fairness. If using the previous fairness methods, we have to train multiple models, each offering a specific level of accuracy-fairness trade-off. This is often computationally expensive, time-consuming, and difficult to deploy, making it less practical for real-world applications. To address this problem, we propose You Only Debias Once (YODO) to achieve in-situ flexible accuracy-fairness trade-offs at inference time, using a single model that trained only once. Instead of pursuing one individual fixed point (fairness-optimum) in the weight space, we aim to find a ”line” in the weight space that connects the accuracy-optimum and fairness-optimum points using a single model. Points (models) on this line implement varying levels of accuracy-fairness trade-offs. At inference time, by manually selecting the specific position of the learned “line”, our proposed method can achieve arbitrary accuracy-fairness trade-offs for different end-users and scenarios. Experimental results on tabular and image datasets show that YODO achieves flexible trade-offs between model accuracy and fairness, at ultra-low overheads. For example, if we need $100$ levels of trade-off on the \acse dataset, YODO takes $3.53$ seconds while training $100$ fixed models consumes $425$ seconds. The code is available at https://github.com/ahxt/yodo.

Cite this Paper


BibTeX
@InProceedings{pmlr-v280-han25a, title = {You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time}, author = {Han, Xiaotian and Chen, Tianlong and Zhou, Kaixiong and Jiang, Zhimeng and Wang, Zhangyang and Hu, Xia}, booktitle = {Conference on Parsimony and Learning}, pages = {780--809}, year = {2025}, editor = {Chen, Beidi and Liu, Shijia and Pilanci, Mert and Su, Weijie and Sulam, Jeremias and Wang, Yuxiang and Zhu, Zhihui}, volume = {280}, series = {Proceedings of Machine Learning Research}, month = {24--27 Mar}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v280/main/assets/han25a/han25a.pdf}, url = {https://proceedings.mlr.press/v280/han25a.html}, abstract = {Deep neural networks are prone to various bias issues, jeopardizing their applications for high-stake decision-making. Existing fairness methods typically offer a fixed accuracy-fairness trade-off, since the weight of the well-trained model is a fixed point (fairness-optimum) in the weight space. Nevertheless, more flexible accuracy-fairness trade-offs at inference time are practically desired since: 1) stakes of the same downstream task can vary for different individuals, and 2) different regions have diverse laws or regularization for fairness. If using the previous fairness methods, we have to train multiple models, each offering a specific level of accuracy-fairness trade-off. This is often computationally expensive, time-consuming, and difficult to deploy, making it less practical for real-world applications. To address this problem, we propose You Only Debias Once (YODO) to achieve in-situ flexible accuracy-fairness trade-offs at inference time, using a single model that trained only once. Instead of pursuing one individual fixed point (fairness-optimum) in the weight space, we aim to find a ”line” in the weight space that connects the accuracy-optimum and fairness-optimum points using a single model. Points (models) on this line implement varying levels of accuracy-fairness trade-offs. At inference time, by manually selecting the specific position of the learned “line”, our proposed method can achieve arbitrary accuracy-fairness trade-offs for different end-users and scenarios. Experimental results on tabular and image datasets show that YODO achieves flexible trade-offs between model accuracy and fairness, at ultra-low overheads. For example, if we need $100$ levels of trade-off on the \acse dataset, YODO takes $3.53$ seconds while training $100$ fixed models consumes $425$ seconds. The code is available at https://github.com/ahxt/yodo.} }
Endnote
%0 Conference Paper %T You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time %A Xiaotian Han %A Tianlong Chen %A Kaixiong Zhou %A Zhimeng Jiang %A Zhangyang Wang %A Xia Hu %B Conference on Parsimony and Learning %C Proceedings of Machine Learning Research %D 2025 %E Beidi Chen %E Shijia Liu %E Mert Pilanci %E Weijie Su %E Jeremias Sulam %E Yuxiang Wang %E Zhihui Zhu %F pmlr-v280-han25a %I PMLR %P 780--809 %U https://proceedings.mlr.press/v280/han25a.html %V 280 %X Deep neural networks are prone to various bias issues, jeopardizing their applications for high-stake decision-making. Existing fairness methods typically offer a fixed accuracy-fairness trade-off, since the weight of the well-trained model is a fixed point (fairness-optimum) in the weight space. Nevertheless, more flexible accuracy-fairness trade-offs at inference time are practically desired since: 1) stakes of the same downstream task can vary for different individuals, and 2) different regions have diverse laws or regularization for fairness. If using the previous fairness methods, we have to train multiple models, each offering a specific level of accuracy-fairness trade-off. This is often computationally expensive, time-consuming, and difficult to deploy, making it less practical for real-world applications. To address this problem, we propose You Only Debias Once (YODO) to achieve in-situ flexible accuracy-fairness trade-offs at inference time, using a single model that trained only once. Instead of pursuing one individual fixed point (fairness-optimum) in the weight space, we aim to find a ”line” in the weight space that connects the accuracy-optimum and fairness-optimum points using a single model. Points (models) on this line implement varying levels of accuracy-fairness trade-offs. At inference time, by manually selecting the specific position of the learned “line”, our proposed method can achieve arbitrary accuracy-fairness trade-offs for different end-users and scenarios. Experimental results on tabular and image datasets show that YODO achieves flexible trade-offs between model accuracy and fairness, at ultra-low overheads. For example, if we need $100$ levels of trade-off on the \acse dataset, YODO takes $3.53$ seconds while training $100$ fixed models consumes $425$ seconds. The code is available at https://github.com/ahxt/yodo.
APA
Han, X., Chen, T., Zhou, K., Jiang, Z., Wang, Z. & Hu, X.. (2025). You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time. Conference on Parsimony and Learning, in Proceedings of Machine Learning Research 280:780-809 Available from https://proceedings.mlr.press/v280/han25a.html.

Related Material