Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback

Tanmay Goyal, Gaurav Sinha
Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, PMLR 286:1533-1568, 2025.

Abstract

We study the Logistic Contextual Slate Bandit problem, where, at each round, an agent selects a slate of $N$ items from an exponentially large set (of size $2^{\Omega(N)}$) of candidate slates provided by the environment. A single binary reward, determined by a logistic model, is observed for the chosen slate. Our objective is to develop algorithms that maximize cumulative reward over $T$ rounds while maintaining low per-round computational costs. We propose two algorithms, Slate-GLM-OFU and Slate-GLM-TS, that accomplish this goal. These algorithms achieve $N^{O(1)}$ per-round time complexity via local planning (independent slot selections), and low regret through global learning (joint parameter estimation). We provide theoretical and empirical evidence supporting these claims. Under a well-studied diversity assumption, we prove that Slate-GLM-OFU incurs only $\tilde{O}(\sqrt{T})$ regret. Extensive experiments across a wide range of synthetic settings demonstrate that our algorithms consistently outperform state-of-the-art baselines, achieving both the lowest regret and the fastest runtime. Furthermore, we apply our algorithm to select in-context examples in prompts of Language Models for solving binary classification tasks such as sentiment analysis. Our approach achieves competitive test accuracy, making it a viable alternative in practical scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v286-goyal25a, title = {Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback}, author = {Goyal, Tanmay and Sinha, Gaurav}, booktitle = {Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence}, pages = {1533--1568}, year = {2025}, editor = {Chiappa, Silvia and Magliacane, Sara}, volume = {286}, series = {Proceedings of Machine Learning Research}, month = {21--25 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v286/main/assets/goyal25a/goyal25a.pdf}, url = {https://proceedings.mlr.press/v286/goyal25a.html}, abstract = {We study the Logistic Contextual Slate Bandit problem, where, at each round, an agent selects a slate of $N$ items from an exponentially large set (of size $2^{\Omega(N)}$) of candidate slates provided by the environment. A single binary reward, determined by a logistic model, is observed for the chosen slate. Our objective is to develop algorithms that maximize cumulative reward over $T$ rounds while maintaining low per-round computational costs. We propose two algorithms, Slate-GLM-OFU and Slate-GLM-TS, that accomplish this goal. These algorithms achieve $N^{O(1)}$ per-round time complexity via local planning (independent slot selections), and low regret through global learning (joint parameter estimation). We provide theoretical and empirical evidence supporting these claims. Under a well-studied diversity assumption, we prove that Slate-GLM-OFU incurs only $\tilde{O}(\sqrt{T})$ regret. Extensive experiments across a wide range of synthetic settings demonstrate that our algorithms consistently outperform state-of-the-art baselines, achieving both the lowest regret and the fastest runtime. Furthermore, we apply our algorithm to select in-context examples in prompts of Language Models for solving binary classification tasks such as sentiment analysis. Our approach achieves competitive test accuracy, making it a viable alternative in practical scenarios.} }
Endnote
%0 Conference Paper %T Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback %A Tanmay Goyal %A Gaurav Sinha %B Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2025 %E Silvia Chiappa %E Sara Magliacane %F pmlr-v286-goyal25a %I PMLR %P 1533--1568 %U https://proceedings.mlr.press/v286/goyal25a.html %V 286 %X We study the Logistic Contextual Slate Bandit problem, where, at each round, an agent selects a slate of $N$ items from an exponentially large set (of size $2^{\Omega(N)}$) of candidate slates provided by the environment. A single binary reward, determined by a logistic model, is observed for the chosen slate. Our objective is to develop algorithms that maximize cumulative reward over $T$ rounds while maintaining low per-round computational costs. We propose two algorithms, Slate-GLM-OFU and Slate-GLM-TS, that accomplish this goal. These algorithms achieve $N^{O(1)}$ per-round time complexity via local planning (independent slot selections), and low regret through global learning (joint parameter estimation). We provide theoretical and empirical evidence supporting these claims. Under a well-studied diversity assumption, we prove that Slate-GLM-OFU incurs only $\tilde{O}(\sqrt{T})$ regret. Extensive experiments across a wide range of synthetic settings demonstrate that our algorithms consistently outperform state-of-the-art baselines, achieving both the lowest regret and the fastest runtime. Furthermore, we apply our algorithm to select in-context examples in prompts of Language Models for solving binary classification tasks such as sentiment analysis. Our approach achieves competitive test accuracy, making it a viable alternative in practical scenarios.
APA
Goyal, T. & Sinha, G.. (2025). Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback. Proceedings of the Forty-first Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 286:1533-1568 Available from https://proceedings.mlr.press/v286/goyal25a.html.

Related Material