Towards Predicting Temporal Changes in a Patient’s Chest X-ray Images based on Electronic Health Records

Daeun Kyung, Junu Kim, Tackeun Kim, Edward Choi
Proceedings of the sixth Conference on Health, Inference, and Learning, PMLR 287:247-267, 2025.

Abstract

Chest X-ray (CXR) is an important diagnostic tool widely used in hospitals to assess patient conditions and monitor changes over time. Recently, generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic CXRs. However, these models mainly focus on conditional generation using single-time-point data, i.e., generating CXRs conditioned on their corresponding reports from a specific time. This limits their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. Results show that our framework generates high-quality, realistic future images that effectively capture potential temporal changes. This suggests that our framework could be further developed to support clinical decision-making and provide valuable insights for patient monitoring and treatment planning in the medical field.

Cite this Paper


BibTeX
@InProceedings{pmlr-v287-kyung25a, title = {Towards Predicting Temporal Changes in a Patient’s Chest X-ray Images based on Electronic Health Records}, author = {Kyung, Daeun and Kim, Junu and Kim, Tackeun and Choi, Edward}, booktitle = {Proceedings of the sixth Conference on Health, Inference, and Learning}, pages = {247--267}, year = {2025}, editor = {Xu, Xuhai Orson and Choi, Edward and Singhal, Pankhuri and Gerych, Walter and Tang, Shengpu and Agrawal, Monica and Subbaswamy, Adarsh and Sizikova, Elena and Dunn, Jessilyn and Daneshjou, Roxana and Sarker, Tasmie and McDermott, Matthew and Chen, Irene}, volume = {287}, series = {Proceedings of Machine Learning Research}, month = {25--27 Jun}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v287/main/assets/kyung25a/kyung25a.pdf}, url = {https://proceedings.mlr.press/v287/kyung25a.html}, abstract = {Chest X-ray (CXR) is an important diagnostic tool widely used in hospitals to assess patient conditions and monitor changes over time. Recently, generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic CXRs. However, these models mainly focus on conditional generation using single-time-point data, i.e., generating CXRs conditioned on their corresponding reports from a specific time. This limits their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. Results show that our framework generates high-quality, realistic future images that effectively capture potential temporal changes. This suggests that our framework could be further developed to support clinical decision-making and provide valuable insights for patient monitoring and treatment planning in the medical field.} }
Endnote
%0 Conference Paper %T Towards Predicting Temporal Changes in a Patient’s Chest X-ray Images based on Electronic Health Records %A Daeun Kyung %A Junu Kim %A Tackeun Kim %A Edward Choi %B Proceedings of the sixth Conference on Health, Inference, and Learning %C Proceedings of Machine Learning Research %D 2025 %E Xuhai Orson Xu %E Edward Choi %E Pankhuri Singhal %E Walter Gerych %E Shengpu Tang %E Monica Agrawal %E Adarsh Subbaswamy %E Elena Sizikova %E Jessilyn Dunn %E Roxana Daneshjou %E Tasmie Sarker %E Matthew McDermott %E Irene Chen %F pmlr-v287-kyung25a %I PMLR %P 247--267 %U https://proceedings.mlr.press/v287/kyung25a.html %V 287 %X Chest X-ray (CXR) is an important diagnostic tool widely used in hospitals to assess patient conditions and monitor changes over time. Recently, generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic CXRs. However, these models mainly focus on conditional generation using single-time-point data, i.e., generating CXRs conditioned on their corresponding reports from a specific time. This limits their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. Results show that our framework generates high-quality, realistic future images that effectively capture potential temporal changes. This suggests that our framework could be further developed to support clinical decision-making and provide valuable insights for patient monitoring and treatment planning in the medical field.
APA
Kyung, D., Kim, J., Kim, T. & Choi, E.. (2025). Towards Predicting Temporal Changes in a Patient’s Chest X-ray Images based on Electronic Health Records. Proceedings of the sixth Conference on Health, Inference, and Learning, in Proceedings of Machine Learning Research 287:247-267 Available from https://proceedings.mlr.press/v287/kyung25a.html.

Related Material