Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning

Jialu Tang, Tong Xia, Yuan Lu, Cecilia Mascolo, Aaqib Saeed
Proceedings of the sixth Conference on Health, Inference, and Learning, PMLR 287:89-104, 2025.

Abstract

Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves an accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v287-tang25a, title = {Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning}, author = {Tang, Jialu and Xia, Tong and Lu, Yuan and Mascolo, Cecilia and Saeed, Aaqib}, booktitle = {Proceedings of the sixth Conference on Health, Inference, and Learning}, pages = {89--104}, year = {2025}, editor = {Xu, Xuhai Orson and Choi, Edward and Singhal, Pankhuri and Gerych, Walter and Tang, Shengpu and Agrawal, Monica and Subbaswamy, Adarsh and Sizikova, Elena and Dunn, Jessilyn and Daneshjou, Roxana and Sarker, Tasmie and McDermott, Matthew and Chen, Irene}, volume = {287}, series = {Proceedings of Machine Learning Research}, month = {25--27 Jun}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v287/main/assets/tang25a/tang25a.pdf}, url = {https://proceedings.mlr.press/v287/tang25a.html}, abstract = {Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves an accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.} }
Endnote
%0 Conference Paper %T Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning %A Jialu Tang %A Tong Xia %A Yuan Lu %A Cecilia Mascolo %A Aaqib Saeed %B Proceedings of the sixth Conference on Health, Inference, and Learning %C Proceedings of Machine Learning Research %D 2025 %E Xuhai Orson Xu %E Edward Choi %E Pankhuri Singhal %E Walter Gerych %E Shengpu Tang %E Monica Agrawal %E Adarsh Subbaswamy %E Elena Sizikova %E Jessilyn Dunn %E Roxana Daneshjou %E Tasmie Sarker %E Matthew McDermott %E Irene Chen %F pmlr-v287-tang25a %I PMLR %P 89--104 %U https://proceedings.mlr.press/v287/tang25a.html %V 287 %X Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves an accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.
APA
Tang, J., Xia, T., Lu, Y., Mascolo, C. & Saeed, A.. (2025). Electrocardiogram–Language Model for Few-Shot Question Answering with Meta Learning. Proceedings of the sixth Conference on Health, Inference, and Learning, in Proceedings of Machine Learning Research 287:89-104 Available from https://proceedings.mlr.press/v287/tang25a.html.

Related Material