Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction

Leisheng Yu, Yanxiao Cai, Minxing Zhang, Xia Hu
Proceedings of the sixth Conference on Health, Inference, and Learning, PMLR 287:908-924, 2025.

Abstract

The burgeoning volume of electronic health records (EHRs) has enabled deep learning models to excel in predictive healthcare. However, for high-stakes applications such as diagnosis prediction, model interpretability remains paramount. Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit, providing explanations lacking flexibility and succinctness. In this paper, we introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations that allow for interventions from clinical experts. By modeling each patient as a unique hypergraph and employing a message-passing mechanism, SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations. It also addresses the incompleteness of the EHR data by accounting for essential false negatives in the original diagnosis record. A qualitative case study and extensive quantitative evaluations on two real-world EHR datasets demonstrate the superior predictive performance and interpretability of SHy over existing state-of-the-art models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v287-yu25a, title = {Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction}, author = {Yu, Leisheng and Cai, Yanxiao and Zhang, Minxing and Hu, Xia}, booktitle = {Proceedings of the sixth Conference on Health, Inference, and Learning}, pages = {908--924}, year = {2025}, editor = {Xu, Xuhai Orson and Choi, Edward and Singhal, Pankhuri and Gerych, Walter and Tang, Shengpu and Agrawal, Monica and Subbaswamy, Adarsh and Sizikova, Elena and Dunn, Jessilyn and Daneshjou, Roxana and Sarker, Tasmie and McDermott, Matthew and Chen, Irene}, volume = {287}, series = {Proceedings of Machine Learning Research}, month = {25--27 Jun}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v287/main/assets/yu25a/yu25a.pdf}, url = {https://proceedings.mlr.press/v287/yu25a.html}, abstract = {The burgeoning volume of electronic health records (EHRs) has enabled deep learning models to excel in predictive healthcare. However, for high-stakes applications such as diagnosis prediction, model interpretability remains paramount. Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit, providing explanations lacking flexibility and succinctness. In this paper, we introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations that allow for interventions from clinical experts. By modeling each patient as a unique hypergraph and employing a message-passing mechanism, SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations. It also addresses the incompleteness of the EHR data by accounting for essential false negatives in the original diagnosis record. A qualitative case study and extensive quantitative evaluations on two real-world EHR datasets demonstrate the superior predictive performance and interpretability of SHy over existing state-of-the-art models.} }
Endnote
%0 Conference Paper %T Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction %A Leisheng Yu %A Yanxiao Cai %A Minxing Zhang %A Xia Hu %B Proceedings of the sixth Conference on Health, Inference, and Learning %C Proceedings of Machine Learning Research %D 2025 %E Xuhai Orson Xu %E Edward Choi %E Pankhuri Singhal %E Walter Gerych %E Shengpu Tang %E Monica Agrawal %E Adarsh Subbaswamy %E Elena Sizikova %E Jessilyn Dunn %E Roxana Daneshjou %E Tasmie Sarker %E Matthew McDermott %E Irene Chen %F pmlr-v287-yu25a %I PMLR %P 908--924 %U https://proceedings.mlr.press/v287/yu25a.html %V 287 %X The burgeoning volume of electronic health records (EHRs) has enabled deep learning models to excel in predictive healthcare. However, for high-stakes applications such as diagnosis prediction, model interpretability remains paramount. Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit, providing explanations lacking flexibility and succinctness. In this paper, we introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations that allow for interventions from clinical experts. By modeling each patient as a unique hypergraph and employing a message-passing mechanism, SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations. It also addresses the incompleteness of the EHR data by accounting for essential false negatives in the original diagnosis record. A qualitative case study and extensive quantitative evaluations on two real-world EHR datasets demonstrate the superior predictive performance and interpretability of SHy over existing state-of-the-art models.
APA
Yu, L., Cai, Y., Zhang, M. & Hu, X.. (2025). Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction. Proceedings of the sixth Conference on Health, Inference, and Learning, in Proceedings of Machine Learning Research 287:908-924 Available from https://proceedings.mlr.press/v287/yu25a.html.

Related Material