[edit]
Faster Acceleration for Steepest Descent
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:202-230, 2025.
Abstract
Recent advances (Sherman, 2017; Sidford and Tian, 2018; Cohen et al., 2021) have overcome the fundamental barrier of dimension dependence in the iteration complexity of solving $\ell_\infty$ regression with first-order methods. Yet it remains unclear to what extent such acceleration can be achieved for general $\ell_p$ smooth functions. In this paper, we propose a new accelerated first-order method for convex optimization under non-Euclidean smoothness assumptions. In contrast to standard acceleration techniques, our approach uses primal-dual iterate sequences taken with respect to \textit{differing} norms, which are then coupled using an \textit{implicitly} determined interpolation parameter. For $\ell_p$ norm smooth problems in $d$ dimensions, our method provides an iteration complexity improvement of up to $O(d^{1-\frac{2}{p}})$ in terms of calls to a first-order oracle, thereby allowing us to circumvent long-standing barriers in accelerated non-Euclidean steepest descent.