[edit]
Decision Making in Changing Environments: Robustness, Query-Based Learning, and Differential Privacy
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:983-985, 2025.
Abstract
We study the problem of interactive decision making in which the underlying environment changes over time subject to given constraints. We propose a framework, which we call \textit{hybrid Decision Making with Structured Observations} (hybrid DMSO), that provides an interpolation between the stochastic and adversarial settings of decision making. Within this framework, we can analyze local differentially private decision making, query-based learning (in particular, SQ learning), and robust and smooth decision making under the same umbrella, deriving upper and lower bounds based on variants of the Decision-Estimation Coefficient (DEC). We further establish strong connections between the DEC’s behavior, the SQ dimension, local minimax complexity, learnability, and joint differential privacy.