Rate-Preserving Reductions for Blackwell Approachability

Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:1380-1414, 2025.

Abstract

Abernethy et al. (2011) showed that Blackwell approachability and no-regret learning are equivalent, in the sense that any algorithm that solves a specific Blackwell approachability instance can be converted to a sublinear regret algorithm for a specific no-regret learning instance, and vice versa. In this paper, we study a more fine-grained form of such reductions, and ask when this translation between problems preserves not only a sublinear rate of convergence, but also preserves the optimal rate of convergence. That is, in which cases does it suffice to find the optimal regret bound for a no-regret learning instance in order to find the optimal rate of convergence for a corresponding approachability instance? We show that the reduction of Abernethy et al. (2011) (and of other subsequent work) does not preserve rates: their reduction may reduce a $d$-dimensional approachability instance $\mathcal{I}_1$ with optimal convergence rate $R_1$ to a no-regret learning instance $\mathcal{I}_2$ with optimal regret-per-round of $R_2$, with $R_{2}/R_{1}$ arbitrarily large (in particular, it is possible that $R_1 = 0$ and $R_{2} > 0$). On the other hand, we show that it is possible to tightly reduce any approachability instance to an instance of a generalized form of regret minimization we call \emph{improper $\phi$-regret minimization} (a variant of the $\phi$-regret minimization of Gordon et al. (2008) where the transformation functions may map actions outside of the action set). Finally, we characterize when linear transformations suffice to reduce improper $\phi$-regret minimization problems to standard classes of regret minimization problems (such as external regret minimization and proper $\phi$-regret minimization) in a rate preserving manner. We prove that some improper $\phi$-regret minimization instances cannot be reduced to either subclass of instance in this way, suggesting that approachability can capture some problems that cannot be easily phrased in the standard language of online learning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v291-dann25a, title = {Rate-Preserving Reductions for Blackwell Approachability}, author = {Dann, Christoph and Mansour, Yishay and Mohri, Mehryar and Schneider, Jon and Sivan, Balasubramanian}, booktitle = {Proceedings of Thirty Eighth Conference on Learning Theory}, pages = {1380--1414}, year = {2025}, editor = {Haghtalab, Nika and Moitra, Ankur}, volume = {291}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--04 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v291/main/assets/dann25a/dann25a.pdf}, url = {https://proceedings.mlr.press/v291/dann25a.html}, abstract = {Abernethy et al. (2011) showed that Blackwell approachability and no-regret learning are equivalent, in the sense that any algorithm that solves a specific Blackwell approachability instance can be converted to a sublinear regret algorithm for a specific no-regret learning instance, and vice versa. In this paper, we study a more fine-grained form of such reductions, and ask when this translation between problems preserves not only a sublinear rate of convergence, but also preserves the optimal rate of convergence. That is, in which cases does it suffice to find the optimal regret bound for a no-regret learning instance in order to find the optimal rate of convergence for a corresponding approachability instance? We show that the reduction of Abernethy et al. (2011) (and of other subsequent work) does not preserve rates: their reduction may reduce a $d$-dimensional approachability instance $\mathcal{I}_1$ with optimal convergence rate $R_1$ to a no-regret learning instance $\mathcal{I}_2$ with optimal regret-per-round of $R_2$, with $R_{2}/R_{1}$ arbitrarily large (in particular, it is possible that $R_1 = 0$ and $R_{2} > 0$). On the other hand, we show that it is possible to tightly reduce any approachability instance to an instance of a generalized form of regret minimization we call \emph{improper $\phi$-regret minimization} (a variant of the $\phi$-regret minimization of Gordon et al. (2008) where the transformation functions may map actions outside of the action set). Finally, we characterize when linear transformations suffice to reduce improper $\phi$-regret minimization problems to standard classes of regret minimization problems (such as external regret minimization and proper $\phi$-regret minimization) in a rate preserving manner. We prove that some improper $\phi$-regret minimization instances cannot be reduced to either subclass of instance in this way, suggesting that approachability can capture some problems that cannot be easily phrased in the standard language of online learning.} }
Endnote
%0 Conference Paper %T Rate-Preserving Reductions for Blackwell Approachability %A Christoph Dann %A Yishay Mansour %A Mehryar Mohri %A Jon Schneider %A Balasubramanian Sivan %B Proceedings of Thirty Eighth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2025 %E Nika Haghtalab %E Ankur Moitra %F pmlr-v291-dann25a %I PMLR %P 1380--1414 %U https://proceedings.mlr.press/v291/dann25a.html %V 291 %X Abernethy et al. (2011) showed that Blackwell approachability and no-regret learning are equivalent, in the sense that any algorithm that solves a specific Blackwell approachability instance can be converted to a sublinear regret algorithm for a specific no-regret learning instance, and vice versa. In this paper, we study a more fine-grained form of such reductions, and ask when this translation between problems preserves not only a sublinear rate of convergence, but also preserves the optimal rate of convergence. That is, in which cases does it suffice to find the optimal regret bound for a no-regret learning instance in order to find the optimal rate of convergence for a corresponding approachability instance? We show that the reduction of Abernethy et al. (2011) (and of other subsequent work) does not preserve rates: their reduction may reduce a $d$-dimensional approachability instance $\mathcal{I}_1$ with optimal convergence rate $R_1$ to a no-regret learning instance $\mathcal{I}_2$ with optimal regret-per-round of $R_2$, with $R_{2}/R_{1}$ arbitrarily large (in particular, it is possible that $R_1 = 0$ and $R_{2} > 0$). On the other hand, we show that it is possible to tightly reduce any approachability instance to an instance of a generalized form of regret minimization we call \emph{improper $\phi$-regret minimization} (a variant of the $\phi$-regret minimization of Gordon et al. (2008) where the transformation functions may map actions outside of the action set). Finally, we characterize when linear transformations suffice to reduce improper $\phi$-regret minimization problems to standard classes of regret minimization problems (such as external regret minimization and proper $\phi$-regret minimization) in a rate preserving manner. We prove that some improper $\phi$-regret minimization instances cannot be reduced to either subclass of instance in this way, suggesting that approachability can capture some problems that cannot be easily phrased in the standard language of online learning.
APA
Dann, C., Mansour, Y., Mohri, M., Schneider, J. & Sivan, B.. (2025). Rate-Preserving Reductions for Blackwell Approachability. Proceedings of Thirty Eighth Conference on Learning Theory, in Proceedings of Machine Learning Research 291:1380-1414 Available from https://proceedings.mlr.press/v291/dann25a.html.

Related Material