[edit]
Logarithmic Width Suffices for Robust Memorization
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:1638-1690, 2025.
Abstract
The memorization capacity of neural networks with a given architecture has been thoroughly studied in many works. Specifically, it is well-known that memorizing $N$ samples can be done using a network of constant width, independent of $N$. However, the required constructions are often quite delicate. In this paper, we consider the natural question of how well feedforward ReLU neural networks can memorize \emph{robustly}, namely while being able to withstand adversarial perturbations of a given radius. We establish both upper and lower bounds on the possible radius for general $l_p$ norms, implying (among other things) that width \emph{logarithmic} in the number of input samples is necessary and sufficient to achieve robust memorization (with robustness radius independent of $N$).