Alternating Regret for Online Convex Optimization

Soumita Hait, Ping Li, Haipeng Luo, Mengxiao Zhang
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:2632-2633, 2025.

Abstract

Motivated by alternating learning dynamics in two-player games, a recent work by Cevher et al. (2024) shows that $o(\sqrt{T})$ alternating regret is possible for any $T$-round adversarial Online Linear Optimization (OLO) problem, and left as an open question whether the same is true for general Online Convex Optimization (OCO). We answer this question in the affirmative by showing that the continuous Hedge algorithm achieves $\tilde{\mathcal{O}}(d^{\frac{2}{3}}T^{\frac{1}{3}})$ alternating regret for any adversarial $d$-dimensional OCO problems. We show that this implies an alternating learning dynamic that finds a Nash equilibrium for any convex-concave zero-sum games or a coarse correlated equilibrium for any convex two-player general-sum games at a rate of $\tilde{\mathcal{O}}(d^{\frac{2}{3}}/T^{\frac{2}{3}})$. To further improve the time complexity and/or the dimension dependence, we propose another simple algorithm, Follow-the-Regularized-Leader with a regularizer whose convex conjugate is 3rd-order smooth, for OCO with smooth and self-concordant loss functions (such as linear or quadratic losses). We instantiate our algorithm with different regularizers and show that, for example, when the decision set is the $\ell_2$ ball, our algorithm achieves $\tilde{\mathcal{O}}(T^{\frac{2}{5}})$ alternating regret with no dimension dependence (and a better $\tilde{\mathcal{O}}(T^{\frac{1}{3}})$ bound for quadratic losses). We complement our results by showing some algorithm-specific alternating regret lower bounds, including a somewhat surprising $\Omega(\sqrt{T})$ lower bound for a Regret Matching variant that is widely used in alternating learning dynamics.

Cite this Paper


BibTeX
@InProceedings{pmlr-v291-hait25a, title = {Alternating Regret for Online Convex Optimization}, author = {Hait, Soumita and Li, Ping and Luo, Haipeng and Zhang, Mengxiao}, booktitle = {Proceedings of Thirty Eighth Conference on Learning Theory}, pages = {2632--2633}, year = {2025}, editor = {Haghtalab, Nika and Moitra, Ankur}, volume = {291}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--04 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v291/main/assets/hait25a/hait25a.pdf}, url = {https://proceedings.mlr.press/v291/hait25a.html}, abstract = {Motivated by alternating learning dynamics in two-player games, a recent work by Cevher et al. (2024) shows that $o(\sqrt{T})$ alternating regret is possible for any $T$-round adversarial Online Linear Optimization (OLO) problem, and left as an open question whether the same is true for general Online Convex Optimization (OCO). We answer this question in the affirmative by showing that the continuous Hedge algorithm achieves $\tilde{\mathcal{O}}(d^{\frac{2}{3}}T^{\frac{1}{3}})$ alternating regret for any adversarial $d$-dimensional OCO problems. We show that this implies an alternating learning dynamic that finds a Nash equilibrium for any convex-concave zero-sum games or a coarse correlated equilibrium for any convex two-player general-sum games at a rate of $\tilde{\mathcal{O}}(d^{\frac{2}{3}}/T^{\frac{2}{3}})$. To further improve the time complexity and/or the dimension dependence, we propose another simple algorithm, Follow-the-Regularized-Leader with a regularizer whose convex conjugate is 3rd-order smooth, for OCO with smooth and self-concordant loss functions (such as linear or quadratic losses). We instantiate our algorithm with different regularizers and show that, for example, when the decision set is the $\ell_2$ ball, our algorithm achieves $\tilde{\mathcal{O}}(T^{\frac{2}{5}})$ alternating regret with no dimension dependence (and a better $\tilde{\mathcal{O}}(T^{\frac{1}{3}})$ bound for quadratic losses). We complement our results by showing some algorithm-specific alternating regret lower bounds, including a somewhat surprising $\Omega(\sqrt{T})$ lower bound for a Regret Matching variant that is widely used in alternating learning dynamics.} }
Endnote
%0 Conference Paper %T Alternating Regret for Online Convex Optimization %A Soumita Hait %A Ping Li %A Haipeng Luo %A Mengxiao Zhang %B Proceedings of Thirty Eighth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2025 %E Nika Haghtalab %E Ankur Moitra %F pmlr-v291-hait25a %I PMLR %P 2632--2633 %U https://proceedings.mlr.press/v291/hait25a.html %V 291 %X Motivated by alternating learning dynamics in two-player games, a recent work by Cevher et al. (2024) shows that $o(\sqrt{T})$ alternating regret is possible for any $T$-round adversarial Online Linear Optimization (OLO) problem, and left as an open question whether the same is true for general Online Convex Optimization (OCO). We answer this question in the affirmative by showing that the continuous Hedge algorithm achieves $\tilde{\mathcal{O}}(d^{\frac{2}{3}}T^{\frac{1}{3}})$ alternating regret for any adversarial $d$-dimensional OCO problems. We show that this implies an alternating learning dynamic that finds a Nash equilibrium for any convex-concave zero-sum games or a coarse correlated equilibrium for any convex two-player general-sum games at a rate of $\tilde{\mathcal{O}}(d^{\frac{2}{3}}/T^{\frac{2}{3}})$. To further improve the time complexity and/or the dimension dependence, we propose another simple algorithm, Follow-the-Regularized-Leader with a regularizer whose convex conjugate is 3rd-order smooth, for OCO with smooth and self-concordant loss functions (such as linear or quadratic losses). We instantiate our algorithm with different regularizers and show that, for example, when the decision set is the $\ell_2$ ball, our algorithm achieves $\tilde{\mathcal{O}}(T^{\frac{2}{5}})$ alternating regret with no dimension dependence (and a better $\tilde{\mathcal{O}}(T^{\frac{1}{3}})$ bound for quadratic losses). We complement our results by showing some algorithm-specific alternating regret lower bounds, including a somewhat surprising $\Omega(\sqrt{T})$ lower bound for a Regret Matching variant that is widely used in alternating learning dynamics.
APA
Hait, S., Li, P., Luo, H. & Zhang, M.. (2025). Alternating Regret for Online Convex Optimization. Proceedings of Thirty Eighth Conference on Learning Theory, in Proceedings of Machine Learning Research 291:2632-2633 Available from https://proceedings.mlr.press/v291/hait25a.html.

Related Material