[edit]
Provable Complexity Improvement of AdaGrad over SGD: Upper and Lower Bounds in Stochastic Non-Convex Optimization
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:3124-3158, 2025.
Abstract
Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) for stochastic convex optimization under favorable geometry, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal (up to absolute constants) in terms of finding a near-stationary point with respect to the $\ell_2$-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the $\ell_1$-norm of the gradient as the stationarity measure, as opposed to the standard $\ell_2$-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the $\ell_1$-norm stationarity measure, we establish an \emph{upper bound} on the convergence rate of AdaGrad and a corresponding \emph{lower bound} for SGD. In particular, we identify non-convex settings in which the iteration complexity of AdaGrad is favorable over SGD and show that, for certain configurations of problem parameters, it outperforms SGD by a factor of $d$, where $d$ is the problem dimension. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions.