Online Convex Optimization with a Separation Oracle

Zakaria Mhammedi
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:4033-4077, 2025.

Abstract

In this paper, we introduce a new projection-free algorithm for Online Convex Optimization (OCO) with a state-of-the-art regret guarantee among separation-based algorithms. Existing projection-free methods based on the classical Frank-Wolfe algorithm achieve a suboptimal regret bound of $O(T^{3/4})$, while more recent separation-based approaches guarantee a regret bound of $O(\kappa \sqrt{T})$, where $\kappa$ denotes the asphericity of the feasible set, defined as the ratio of the radii of the containing and contained balls. However, for ill-conditioned sets, $\kappa$ can be arbitrarily large, potentially leading to poor performance. Our algorithm achieves a regret bound of $\widetilde{O}(\sqrt{dT} + \kappa d)$, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per round. Crucially, the main term in the bound, $\widetilde{O}(\sqrt{d T})$, is independent of $\kappa$, addressing the limitations of previous methods. Additionally, as a by-product of our analysis, we recover the $O(\kappa \sqrt{T})$ regret bound of existing OCO algorithms with a more straightforward analysis and improve the regret bound for projection-free online exp-concave optimization. Finally, for constrained stochastic convex optimization, we achieve a state-of-the-art convergence rate of $\widetilde{O}(\sigma/\sqrt{T} + \kappa d/T)$, where $\sigma$ represents the noise in the stochastic gradients, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per iteration.

Cite this Paper


BibTeX
@InProceedings{pmlr-v291-mhammedi25a, title = {Online Convex Optimization with a Separation Oracle}, author = {Mhammedi, Zakaria}, booktitle = {Proceedings of Thirty Eighth Conference on Learning Theory}, pages = {4033--4077}, year = {2025}, editor = {Haghtalab, Nika and Moitra, Ankur}, volume = {291}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--04 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v291/main/assets/mhammedi25a/mhammedi25a.pdf}, url = {https://proceedings.mlr.press/v291/mhammedi25a.html}, abstract = {In this paper, we introduce a new projection-free algorithm for Online Convex Optimization (OCO) with a state-of-the-art regret guarantee among separation-based algorithms. Existing projection-free methods based on the classical Frank-Wolfe algorithm achieve a suboptimal regret bound of $O(T^{3/4})$, while more recent separation-based approaches guarantee a regret bound of $O(\kappa \sqrt{T})$, where $\kappa$ denotes the asphericity of the feasible set, defined as the ratio of the radii of the containing and contained balls. However, for ill-conditioned sets, $\kappa$ can be arbitrarily large, potentially leading to poor performance. Our algorithm achieves a regret bound of $\widetilde{O}(\sqrt{dT} + \kappa d)$, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per round. Crucially, the main term in the bound, $\widetilde{O}(\sqrt{d T})$, is independent of $\kappa$, addressing the limitations of previous methods. Additionally, as a by-product of our analysis, we recover the $O(\kappa \sqrt{T})$ regret bound of existing OCO algorithms with a more straightforward analysis and improve the regret bound for projection-free online exp-concave optimization. Finally, for constrained stochastic convex optimization, we achieve a state-of-the-art convergence rate of $\widetilde{O}(\sigma/\sqrt{T} + \kappa d/T)$, where $\sigma$ represents the noise in the stochastic gradients, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per iteration.} }
Endnote
%0 Conference Paper %T Online Convex Optimization with a Separation Oracle %A Zakaria Mhammedi %B Proceedings of Thirty Eighth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2025 %E Nika Haghtalab %E Ankur Moitra %F pmlr-v291-mhammedi25a %I PMLR %P 4033--4077 %U https://proceedings.mlr.press/v291/mhammedi25a.html %V 291 %X In this paper, we introduce a new projection-free algorithm for Online Convex Optimization (OCO) with a state-of-the-art regret guarantee among separation-based algorithms. Existing projection-free methods based on the classical Frank-Wolfe algorithm achieve a suboptimal regret bound of $O(T^{3/4})$, while more recent separation-based approaches guarantee a regret bound of $O(\kappa \sqrt{T})$, where $\kappa$ denotes the asphericity of the feasible set, defined as the ratio of the radii of the containing and contained balls. However, for ill-conditioned sets, $\kappa$ can be arbitrarily large, potentially leading to poor performance. Our algorithm achieves a regret bound of $\widetilde{O}(\sqrt{dT} + \kappa d)$, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per round. Crucially, the main term in the bound, $\widetilde{O}(\sqrt{d T})$, is independent of $\kappa$, addressing the limitations of previous methods. Additionally, as a by-product of our analysis, we recover the $O(\kappa \sqrt{T})$ regret bound of existing OCO algorithms with a more straightforward analysis and improve the regret bound for projection-free online exp-concave optimization. Finally, for constrained stochastic convex optimization, we achieve a state-of-the-art convergence rate of $\widetilde{O}(\sigma/\sqrt{T} + \kappa d/T)$, where $\sigma$ represents the noise in the stochastic gradients, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per iteration.
APA
Mhammedi, Z.. (2025). Online Convex Optimization with a Separation Oracle. Proceedings of Thirty Eighth Conference on Learning Theory, in Proceedings of Machine Learning Research 291:4033-4077 Available from https://proceedings.mlr.press/v291/mhammedi25a.html.

Related Material