Optimal Scheduling of Dynamic Transport

Panos Tsimpos, Ren Zhi, Jakob Zech, Youssef Marzouk
Proceedings of Thirty Eighth Conference on Learning Theory, PMLR 291:5441-5505, 2025.

Abstract

Flow-based methods for sampling and generative modeling use continuous-time dynamical systems to represent a {transport map} that pushes forward a source measure to a target measure. The introduction of a time axis provides considerable design freedom, and a central question is how to exploit this freedom. Though many popular methods seek straight line (i.e., zero acceleration) trajectories, we show here that a specific class of “curved” trajectories can significantly improve approximation and learning. In particular, we consider the unit-time interpolation of any given transport map $T$ and seek the schedule $\tau: [0,1] \to [0,1]$ that minimizes the spatial Lipschitz constant of the corresponding velocity field over all times $t \in [0,1]$. This quantity is crucial as it allows for control of the approximation error when the velocity field is learned from data. We show that, for a broad class of source/target measures and transport maps $T$, the \emph{optimal schedule} can be computed in closed form, and that the resulting optimal Lipschitz constant is \emph{exponentially smaller} than that induced by an identity schedule (corresponding to, for instance, the Wasserstein geodesic). Our proof technique relies on the calculus of variations and $\Gamma$-convergence, allowing us to approximate the aforementioned degenerate objective by a family of smooth, tractable problems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v291-tsimpos25a, title = {Optimal Scheduling of Dynamic Transport}, author = {Tsimpos, Panos and Zhi, Ren and Zech, Jakob and Marzouk, Youssef}, booktitle = {Proceedings of Thirty Eighth Conference on Learning Theory}, pages = {5441--5505}, year = {2025}, editor = {Haghtalab, Nika and Moitra, Ankur}, volume = {291}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--04 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v291/main/assets/tsimpos25a/tsimpos25a.pdf}, url = {https://proceedings.mlr.press/v291/tsimpos25a.html}, abstract = {Flow-based methods for sampling and generative modeling use continuous-time dynamical systems to represent a {transport map} that pushes forward a source measure to a target measure. The introduction of a time axis provides considerable design freedom, and a central question is how to exploit this freedom. Though many popular methods seek straight line (i.e., zero acceleration) trajectories, we show here that a specific class of “curved” trajectories can significantly improve approximation and learning. In particular, we consider the unit-time interpolation of any given transport map $T$ and seek the schedule $\tau: [0,1] \to [0,1]$ that minimizes the spatial Lipschitz constant of the corresponding velocity field over all times $t \in [0,1]$. This quantity is crucial as it allows for control of the approximation error when the velocity field is learned from data. We show that, for a broad class of source/target measures and transport maps $T$, the \emph{optimal schedule} can be computed in closed form, and that the resulting optimal Lipschitz constant is \emph{exponentially smaller} than that induced by an identity schedule (corresponding to, for instance, the Wasserstein geodesic). Our proof technique relies on the calculus of variations and $\Gamma$-convergence, allowing us to approximate the aforementioned degenerate objective by a family of smooth, tractable problems.} }
Endnote
%0 Conference Paper %T Optimal Scheduling of Dynamic Transport %A Panos Tsimpos %A Ren Zhi %A Jakob Zech %A Youssef Marzouk %B Proceedings of Thirty Eighth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2025 %E Nika Haghtalab %E Ankur Moitra %F pmlr-v291-tsimpos25a %I PMLR %P 5441--5505 %U https://proceedings.mlr.press/v291/tsimpos25a.html %V 291 %X Flow-based methods for sampling and generative modeling use continuous-time dynamical systems to represent a {transport map} that pushes forward a source measure to a target measure. The introduction of a time axis provides considerable design freedom, and a central question is how to exploit this freedom. Though many popular methods seek straight line (i.e., zero acceleration) trajectories, we show here that a specific class of “curved” trajectories can significantly improve approximation and learning. In particular, we consider the unit-time interpolation of any given transport map $T$ and seek the schedule $\tau: [0,1] \to [0,1]$ that minimizes the spatial Lipschitz constant of the corresponding velocity field over all times $t \in [0,1]$. This quantity is crucial as it allows for control of the approximation error when the velocity field is learned from data. We show that, for a broad class of source/target measures and transport maps $T$, the \emph{optimal schedule} can be computed in closed form, and that the resulting optimal Lipschitz constant is \emph{exponentially smaller} than that induced by an identity schedule (corresponding to, for instance, the Wasserstein geodesic). Our proof technique relies on the calculus of variations and $\Gamma$-convergence, allowing us to approximate the aforementioned degenerate objective by a family of smooth, tractable problems.
APA
Tsimpos, P., Zhi, R., Zech, J. & Marzouk, Y.. (2025). Optimal Scheduling of Dynamic Transport. Proceedings of Thirty Eighth Conference on Learning Theory, in Proceedings of Machine Learning Research 291:5441-5505 Available from https://proceedings.mlr.press/v291/tsimpos25a.html.

Related Material