What is Fairness? On Protected Attributes and Fictitious Worlds

Ludwig Bothmann, Kristina Peters, Bernd Bischl
Proceedings of Fourth European Workshop on Algorithmic Fairness, PMLR 294:64-91, 2025.

Abstract

A growing body of literature in fairness-aware machine learning (fairML) aims to mitigate machine learning (ML)-related unfairness in automated decision-making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods to ensure that trained ML models achieve low scores on these metrics. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a significant gap between centuries of philosophical discussion and the recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We argue that fairness problems can arise even without the presence of protected attributes (PAs), and point out that fairness and predictive performance are not irreconcilable opposites, but that the latter is necessary to achieve the former. Furthermore, we argue why and how causal considerations are necessary when assessing fairness in the presence of PAs by proposing a fictitious, normatively desired (FiND) world in which PAs have no causal effects. In practice, this FiND world must be approximated by a warped world in which the causal effects of the PAs are removed from the real-world data. Finally, we achieve greater linguistic clarity in the discussion of fairML. We outline algorithms for practical applications and present illustrative experiments on COMPAS data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v294-bothmann25a, title = {What is Fairness? On Protected Attributes and Fictitious Worlds}, author = {Bothmann, Ludwig and Peters, Kristina and Bischl, Bernd}, booktitle = {Proceedings of Fourth European Workshop on Algorithmic Fairness}, pages = {64--91}, year = {2025}, editor = {Weerts, Hilde and Pechenizkiy, Mykola and Allhutter, Doris and CorrĂȘa, Ana Maria and Grote, Thomas and Liem, Cynthia}, volume = {294}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--02 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v294/main/assets/bothmann25a/bothmann25a.pdf}, url = {https://proceedings.mlr.press/v294/bothmann25a.html}, abstract = {A growing body of literature in fairness-aware machine learning (fairML) aims to mitigate machine learning (ML)-related unfairness in automated decision-making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods to ensure that trained ML models achieve low scores on these metrics. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a significant gap between centuries of philosophical discussion and the recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We argue that fairness problems can arise even without the presence of protected attributes (PAs), and point out that fairness and predictive performance are not irreconcilable opposites, but that the latter is necessary to achieve the former. Furthermore, we argue why and how causal considerations are necessary when assessing fairness in the presence of PAs by proposing a fictitious, normatively desired (FiND) world in which PAs have no causal effects. In practice, this FiND world must be approximated by a warped world in which the causal effects of the PAs are removed from the real-world data. Finally, we achieve greater linguistic clarity in the discussion of fairML. We outline algorithms for practical applications and present illustrative experiments on COMPAS data.} }
Endnote
%0 Conference Paper %T What is Fairness? On Protected Attributes and Fictitious Worlds %A Ludwig Bothmann %A Kristina Peters %A Bernd Bischl %B Proceedings of Fourth European Workshop on Algorithmic Fairness %C Proceedings of Machine Learning Research %D 2025 %E Hilde Weerts %E Mykola Pechenizkiy %E Doris Allhutter %E Ana Maria CorrĂȘa %E Thomas Grote %E Cynthia Liem %F pmlr-v294-bothmann25a %I PMLR %P 64--91 %U https://proceedings.mlr.press/v294/bothmann25a.html %V 294 %X A growing body of literature in fairness-aware machine learning (fairML) aims to mitigate machine learning (ML)-related unfairness in automated decision-making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods to ensure that trained ML models achieve low scores on these metrics. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a significant gap between centuries of philosophical discussion and the recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We argue that fairness problems can arise even without the presence of protected attributes (PAs), and point out that fairness and predictive performance are not irreconcilable opposites, but that the latter is necessary to achieve the former. Furthermore, we argue why and how causal considerations are necessary when assessing fairness in the presence of PAs by proposing a fictitious, normatively desired (FiND) world in which PAs have no causal effects. In practice, this FiND world must be approximated by a warped world in which the causal effects of the PAs are removed from the real-world data. Finally, we achieve greater linguistic clarity in the discussion of fairML. We outline algorithms for practical applications and present illustrative experiments on COMPAS data.
APA
Bothmann, L., Peters, K. & Bischl, B.. (2025). What is Fairness? On Protected Attributes and Fictitious Worlds. Proceedings of Fourth European Workshop on Algorithmic Fairness, in Proceedings of Machine Learning Research 294:64-91 Available from https://proceedings.mlr.press/v294/bothmann25a.html.

Related Material