ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning

Sahil Sethi, David Chen, Thomas Statchen, Michael C. Burkhart, Nipun Bhandari, Bashar Ramadan, Brett Beaulieu-Jones
Proceedings of the 10th Machine Learning for Healthcare Conference, PMLR 298, 2025.

Abstract

Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model’s true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments—enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model’s projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.

Cite this Paper


BibTeX
@InProceedings{pmlr-v298-sethi25a, title = {Proto{ECGN}et: Case-Based Interpretable Deep Learning for Multi-Label {ECG} Classification with Contrastive Learning}, author = {Sethi, Sahil and Chen, David and Statchen, Thomas and Burkhart, Michael C. and Bhandari, Nipun and Ramadan, Bashar and Beaulieu-Jones, Brett}, booktitle = {Proceedings of the 10th Machine Learning for Healthcare Conference}, year = {2025}, editor = {Agrawal, Monica and Deshpande, Kaivalya and Engelhard, Matthew and Joshi, Shalmali and Tang, Shengpu and Urteaga, Iñigo}, volume = {298}, series = {Proceedings of Machine Learning Research}, month = {15--16 Aug}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v298/main/assets/sethi25a/sethi25a.pdf}, url = {https://proceedings.mlr.press/v298/sethi25a.html}, abstract = {Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model’s true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments—enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model’s projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.} }
Endnote
%0 Conference Paper %T ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning %A Sahil Sethi %A David Chen %A Thomas Statchen %A Michael C. Burkhart %A Nipun Bhandari %A Bashar Ramadan %A Brett Beaulieu-Jones %B Proceedings of the 10th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2025 %E Monica Agrawal %E Kaivalya Deshpande %E Matthew Engelhard %E Shalmali Joshi %E Shengpu Tang %E Iñigo Urteaga %F pmlr-v298-sethi25a %I PMLR %U https://proceedings.mlr.press/v298/sethi25a.html %V 298 %X Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model’s true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments—enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model’s projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
APA
Sethi, S., Chen, D., Statchen, T., Burkhart, M.C., Bhandari, N., Ramadan, B. & Beaulieu-Jones, B.. (2025). ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning. Proceedings of the 10th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 298 Available from https://proceedings.mlr.press/v298/sethi25a.html.

Related Material