Balancing Interpretability and Flexibility in Modeling Diagnostic Trajectories with an Embedded Neural Hawkes Process Model

Yuankang Zhao, Matthew M. Engelhard
Proceedings of the 10th Machine Learning for Healthcare Conference, PMLR 298, 2025.

Abstract

The Hawkes process (HP) is commonly used to model event sequences with self-reinforcing dynamics, including electronic health records (EHRs). Traditional HPs capture self-reinforcement via parametric impact functions that can be inspected to understand how each event modulates the intensity of others. Neural network-based HPs offer greater flexibility, resulting in improved fit and prediction performance, but at the cost of interpretability, which is often critical in healthcare. In this work, we aim to understand and improve upon this tradeoff. We propose a novel HP formulation in which impact functions are modeled by defining a flexible impact kernel, instantiated as a neural network, in event embedding space, which allows us to model large-scale event sequences with many event types. This approach is more flexible than traditional HPs yet more interpretable than other neural network approaches, and allows us to explicitly trade flexibility for interpretability by adding transformer encoder layers to further contextualize the event embeddings. Results show that our method accurately recovers impact functions in simulations, achieves competitive performance on MIMIC-IV procedure dataset, and gains clinically meaningful interpretation on XX-EHR with children diagnosis dataset even without transformer layers. This suggests that our flexible impact kernel is often sufficient to capture self-reinforcing dynamics in EHRs and other data effectively, implying that interpretability can be maintained without loss of performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v298-zhao25a, title = {Balancing Interpretability and Flexibility in Modeling Diagnostic Trajectories with an Embedded Neural Hawkes Process Model}, author = {Zhao, Yuankang and Engelhard, Matthew M.}, booktitle = {Proceedings of the 10th Machine Learning for Healthcare Conference}, year = {2025}, editor = {Agrawal, Monica and Deshpande, Kaivalya and Engelhard, Matthew and Joshi, Shalmali and Tang, Shengpu and Urteaga, Iñigo}, volume = {298}, series = {Proceedings of Machine Learning Research}, month = {15--16 Aug}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v298/main/assets/zhao25a/zhao25a.pdf}, url = {https://proceedings.mlr.press/v298/zhao25a.html}, abstract = {The Hawkes process (HP) is commonly used to model event sequences with self-reinforcing dynamics, including electronic health records (EHRs). Traditional HPs capture self-reinforcement via parametric impact functions that can be inspected to understand how each event modulates the intensity of others. Neural network-based HPs offer greater flexibility, resulting in improved fit and prediction performance, but at the cost of interpretability, which is often critical in healthcare. In this work, we aim to understand and improve upon this tradeoff. We propose a novel HP formulation in which impact functions are modeled by defining a flexible impact kernel, instantiated as a neural network, in event embedding space, which allows us to model large-scale event sequences with many event types. This approach is more flexible than traditional HPs yet more interpretable than other neural network approaches, and allows us to explicitly trade flexibility for interpretability by adding transformer encoder layers to further contextualize the event embeddings. Results show that our method accurately recovers impact functions in simulations, achieves competitive performance on MIMIC-IV procedure dataset, and gains clinically meaningful interpretation on XX-EHR with children diagnosis dataset even without transformer layers. This suggests that our flexible impact kernel is often sufficient to capture self-reinforcing dynamics in EHRs and other data effectively, implying that interpretability can be maintained without loss of performance.} }
Endnote
%0 Conference Paper %T Balancing Interpretability and Flexibility in Modeling Diagnostic Trajectories with an Embedded Neural Hawkes Process Model %A Yuankang Zhao %A Matthew M. Engelhard %B Proceedings of the 10th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2025 %E Monica Agrawal %E Kaivalya Deshpande %E Matthew Engelhard %E Shalmali Joshi %E Shengpu Tang %E Iñigo Urteaga %F pmlr-v298-zhao25a %I PMLR %U https://proceedings.mlr.press/v298/zhao25a.html %V 298 %X The Hawkes process (HP) is commonly used to model event sequences with self-reinforcing dynamics, including electronic health records (EHRs). Traditional HPs capture self-reinforcement via parametric impact functions that can be inspected to understand how each event modulates the intensity of others. Neural network-based HPs offer greater flexibility, resulting in improved fit and prediction performance, but at the cost of interpretability, which is often critical in healthcare. In this work, we aim to understand and improve upon this tradeoff. We propose a novel HP formulation in which impact functions are modeled by defining a flexible impact kernel, instantiated as a neural network, in event embedding space, which allows us to model large-scale event sequences with many event types. This approach is more flexible than traditional HPs yet more interpretable than other neural network approaches, and allows us to explicitly trade flexibility for interpretability by adding transformer encoder layers to further contextualize the event embeddings. Results show that our method accurately recovers impact functions in simulations, achieves competitive performance on MIMIC-IV procedure dataset, and gains clinically meaningful interpretation on XX-EHR with children diagnosis dataset even without transformer layers. This suggests that our flexible impact kernel is often sufficient to capture self-reinforcing dynamics in EHRs and other data effectively, implying that interpretability can be maintained without loss of performance.
APA
Zhao, Y. & Engelhard, M.M.. (2025). Balancing Interpretability and Flexibility in Modeling Diagnostic Trajectories with an Embedded Neural Hawkes Process Model. Proceedings of the 10th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 298 Available from https://proceedings.mlr.press/v298/zhao25a.html.

Related Material