MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay

Mohammad Saidur Rahman, Scott Coull, Qi Yu, Matthew Wright
Proceedings of the 2025 Conference on Applied Machine Learning for Information Security, PMLR 299:265-291, 2025.

Abstract

Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by relaxing the requirements of the incremental storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are diverse and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose $\underline{M}$alware $\underline{A}$nalysis with $\underline{D}$istribution-$\underline{A}$ware $\underline{R}$eplay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware analysis domain.

Cite this Paper


BibTeX
@InProceedings{pmlr-v299-rahman25a, title = {MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay}, author = {Rahman, Mohammad Saidur and Coull, Scott and Yu, Qi and Wright, Matthew}, booktitle = {Proceedings of the 2025 Conference on Applied Machine Learning for Information Security}, pages = {265--291}, year = {2025}, editor = {Raff, Edward and Rudd, Ethan M.}, volume = {299}, series = {Proceedings of Machine Learning Research}, month = {22--24 Oct}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v299/main/assets/rahman25a/rahman25a.pdf}, url = {https://proceedings.mlr.press/v299/rahman25a.html}, abstract = {Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by relaxing the requirements of the incremental storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are diverse and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose $\underline{M}$alware $\underline{A}$nalysis with $\underline{D}$istribution-$\underline{A}$ware $\underline{R}$eplay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware analysis domain.} }
Endnote
%0 Conference Paper %T MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay %A Mohammad Saidur Rahman %A Scott Coull %A Qi Yu %A Matthew Wright %B Proceedings of the 2025 Conference on Applied Machine Learning for Information Security %C Proceedings of Machine Learning Research %D 2025 %E Edward Raff %E Ethan M. Rudd %F pmlr-v299-rahman25a %I PMLR %P 265--291 %U https://proceedings.mlr.press/v299/rahman25a.html %V 299 %X Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by relaxing the requirements of the incremental storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are diverse and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose $\underline{M}$alware $\underline{A}$nalysis with $\underline{D}$istribution-$\underline{A}$ware $\underline{R}$eplay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware analysis domain.
APA
Rahman, M.S., Coull, S., Yu, Q. & Wright, M.. (2025). MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay. Proceedings of the 2025 Conference on Applied Machine Learning for Information Security, in Proceedings of Machine Learning Research 299:265-291 Available from https://proceedings.mlr.press/v299/rahman25a.html.

Related Material