[edit]
Information Complexity in Bandit Subset Selection
Proceedings of the 26th Annual Conference on Learning Theory, PMLR 30:228-251, 2013.
Abstract
We consider the problem of efficiently exploring the arms of a stochastic bandit to identify the best subset. Under the PAC and the fixed-budget formulations, we derive improved bounds by using KL-divergence-based confidence intervals. Whereas the application of a similar idea in the regret setting has yielded bounds in terms of the KL-divergence between the arms, our bounds in the pure-exploration setting involve the Chernoff information between the arms. In addition to introducing this novel quantity to the bandits literature, we contribute a comparison between the “racing” and “smart sampling” strategies for pure-exploration problems, finding strong evidence in favor of the latter.