Honest Compressions and Their Application to Compression Schemes

Roi Livni, Pierre Simon
Proceedings of the 26th Annual Conference on Learning Theory, PMLR 30:77-92, 2013.

Abstract

The existence of a compression scheme for every concept class with bounded VC-dimension is one of the oldest open problems in statistical learning theory. Here we demonstrate the existence of such compression schemes under stronger assumptions than finite VC-dimension. Specifically, for each concept class we associate a family of concept classes that we call the alternating concept classes. Under the assumption that these concept classes have bounded VC dimension, we prove existence of a compression scheme. This result is motivated by recent progress in the field of model theory with respect to an analogues problem. In fact, our proof can be considered as a constructive proof of these advancements. This means that we describe the reconstruction function explicitly. Not less important, the theorems and proofs we present are in purely combinatorial terms and are available to the reader who is unfamiliar with model theory. Also, using tools from model theory, we apply our results and prove existence of compression schemes in interesting cases, such as concept classes defined by hyperplanes, polynomials, exponentials, restricted analytic functions and compositions, additions and multiplications of all of the above.

Cite this Paper


BibTeX
@InProceedings{pmlr-v30-Livni13, title = {Honest Compressions and Their Application to Compression Schemes}, author = {Livni, Roi and Simon, Pierre}, booktitle = {Proceedings of the 26th Annual Conference on Learning Theory}, pages = {77--92}, year = {2013}, editor = {Shalev-Shwartz, Shai and Steinwart, Ingo}, volume = {30}, series = {Proceedings of Machine Learning Research}, address = {Princeton, NJ, USA}, month = {12--14 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v30/Livni13.pdf}, url = {https://proceedings.mlr.press/v30/Livni13.html}, abstract = {The existence of a compression scheme for every concept class with bounded VC-dimension is one of the oldest open problems in statistical learning theory. Here we demonstrate the existence of such compression schemes under stronger assumptions than finite VC-dimension. Specifically, for each concept class we associate a family of concept classes that we call the alternating concept classes. Under the assumption that these concept classes have bounded VC dimension, we prove existence of a compression scheme. This result is motivated by recent progress in the field of model theory with respect to an analogues problem. In fact, our proof can be considered as a constructive proof of these advancements. This means that we describe the reconstruction function explicitly. Not less important, the theorems and proofs we present are in purely combinatorial terms and are available to the reader who is unfamiliar with model theory. Also, using tools from model theory, we apply our results and prove existence of compression schemes in interesting cases, such as concept classes defined by hyperplanes, polynomials, exponentials, restricted analytic functions and compositions, additions and multiplications of all of the above.} }
Endnote
%0 Conference Paper %T Honest Compressions and Their Application to Compression Schemes %A Roi Livni %A Pierre Simon %B Proceedings of the 26th Annual Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2013 %E Shai Shalev-Shwartz %E Ingo Steinwart %F pmlr-v30-Livni13 %I PMLR %P 77--92 %U https://proceedings.mlr.press/v30/Livni13.html %V 30 %X The existence of a compression scheme for every concept class with bounded VC-dimension is one of the oldest open problems in statistical learning theory. Here we demonstrate the existence of such compression schemes under stronger assumptions than finite VC-dimension. Specifically, for each concept class we associate a family of concept classes that we call the alternating concept classes. Under the assumption that these concept classes have bounded VC dimension, we prove existence of a compression scheme. This result is motivated by recent progress in the field of model theory with respect to an analogues problem. In fact, our proof can be considered as a constructive proof of these advancements. This means that we describe the reconstruction function explicitly. Not less important, the theorems and proofs we present are in purely combinatorial terms and are available to the reader who is unfamiliar with model theory. Also, using tools from model theory, we apply our results and prove existence of compression schemes in interesting cases, such as concept classes defined by hyperplanes, polynomials, exponentials, restricted analytic functions and compositions, additions and multiplications of all of the above.
RIS
TY - CPAPER TI - Honest Compressions and Their Application to Compression Schemes AU - Roi Livni AU - Pierre Simon BT - Proceedings of the 26th Annual Conference on Learning Theory DA - 2013/06/13 ED - Shai Shalev-Shwartz ED - Ingo Steinwart ID - pmlr-v30-Livni13 PB - PMLR DP - Proceedings of Machine Learning Research VL - 30 SP - 77 EP - 92 L1 - http://proceedings.mlr.press/v30/Livni13.pdf UR - https://proceedings.mlr.press/v30/Livni13.html AB - The existence of a compression scheme for every concept class with bounded VC-dimension is one of the oldest open problems in statistical learning theory. Here we demonstrate the existence of such compression schemes under stronger assumptions than finite VC-dimension. Specifically, for each concept class we associate a family of concept classes that we call the alternating concept classes. Under the assumption that these concept classes have bounded VC dimension, we prove existence of a compression scheme. This result is motivated by recent progress in the field of model theory with respect to an analogues problem. In fact, our proof can be considered as a constructive proof of these advancements. This means that we describe the reconstruction function explicitly. Not less important, the theorems and proofs we present are in purely combinatorial terms and are available to the reader who is unfamiliar with model theory. Also, using tools from model theory, we apply our results and prove existence of compression schemes in interesting cases, such as concept classes defined by hyperplanes, polynomials, exponentials, restricted analytic functions and compositions, additions and multiplications of all of the above. ER -
APA
Livni, R. & Simon, P.. (2013). Honest Compressions and Their Application to Compression Schemes. Proceedings of the 26th Annual Conference on Learning Theory, in Proceedings of Machine Learning Research 30:77-92 Available from https://proceedings.mlr.press/v30/Livni13.html.

Related Material