Adapting by Analogy: OOD Generalization of Visuomotor Policies via Functional Correspondence

Pranay Gupta, Henny Admoni, Andrea Bajcsy
Proceedings of The 9th Conference on Robot Learning, PMLR 305:5435-5449, 2025.

Abstract

End-to-end visuomotor policies trained using behavior cloning have shown a remarkable ability to generate complex, multi-modal low-level robot behaviors. However, at deployment time, these policies still struggle to act reliably when faced with out-of-distribution (OOD) visuals induced by objects, backgrounds, or environment changes. Prior works in interactive imitation learning solicit corrective expert demonstrations under the OOD conditions—but this can be costly and inefficient. We observe that task success under OOD conditions does not always warrant novel robot behaviors. In-distribution (ID) behaviors can directly be transferred to OOD conditions that share functional similarities with ID conditions. For example, behaviors trained to interact with in-distribution (ID) pens can apply to interacting with a visually-OOD pencil. The key challenge lies in disambiguating which ID observations functionally correspond to the OOD observation for the task at hand. We propose that an expert can provide this OOD-to-ID functional correspondence. Thus, instead of collecting new demonstrations and re-training at every OOD encounter, our method: (1) detects the need for feedback by checking if current observations are OOD and the most similar training observations show divergent behaviors (2) solicits functional correspondence feedback to disambiguate between those behaviors, and (3) intervenes on the OOD observations with the functionally corresponding ID observations to perform deployment-time generalization. We validate our method across diverse real-world robotic manipulation tasks with a Franka Panda robotic manipulator. Our results show that test-time functional correspondences can improve the generalization of a vision-based diffusion policy to OOD objects and environment conditions with low feedback.

Cite this Paper


BibTeX
@InProceedings{pmlr-v305-gupta25a, title = {Adapting by Analogy: OOD Generalization of Visuomotor Policies via Functional Correspondence}, author = {Gupta, Pranay and Admoni, Henny and Bajcsy, Andrea}, booktitle = {Proceedings of The 9th Conference on Robot Learning}, pages = {5435--5449}, year = {2025}, editor = {Lim, Joseph and Song, Shuran and Park, Hae-Won}, volume = {305}, series = {Proceedings of Machine Learning Research}, month = {27--30 Sep}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v305/main/assets/gupta25a/gupta25a.pdf}, url = {https://proceedings.mlr.press/v305/gupta25a.html}, abstract = {End-to-end visuomotor policies trained using behavior cloning have shown a remarkable ability to generate complex, multi-modal low-level robot behaviors. However, at deployment time, these policies still struggle to act reliably when faced with out-of-distribution (OOD) visuals induced by objects, backgrounds, or environment changes. Prior works in interactive imitation learning solicit corrective expert demonstrations under the OOD conditions—but this can be costly and inefficient. We observe that task success under OOD conditions does not always warrant novel robot behaviors. In-distribution (ID) behaviors can directly be transferred to OOD conditions that share functional similarities with ID conditions. For example, behaviors trained to interact with in-distribution (ID) pens can apply to interacting with a visually-OOD pencil. The key challenge lies in disambiguating which ID observations functionally correspond to the OOD observation for the task at hand. We propose that an expert can provide this OOD-to-ID functional correspondence. Thus, instead of collecting new demonstrations and re-training at every OOD encounter, our method: (1) detects the need for feedback by checking if current observations are OOD and the most similar training observations show divergent behaviors (2) solicits functional correspondence feedback to disambiguate between those behaviors, and (3) intervenes on the OOD observations with the functionally corresponding ID observations to perform deployment-time generalization. We validate our method across diverse real-world robotic manipulation tasks with a Franka Panda robotic manipulator. Our results show that test-time functional correspondences can improve the generalization of a vision-based diffusion policy to OOD objects and environment conditions with low feedback.} }
Endnote
%0 Conference Paper %T Adapting by Analogy: OOD Generalization of Visuomotor Policies via Functional Correspondence %A Pranay Gupta %A Henny Admoni %A Andrea Bajcsy %B Proceedings of The 9th Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2025 %E Joseph Lim %E Shuran Song %E Hae-Won Park %F pmlr-v305-gupta25a %I PMLR %P 5435--5449 %U https://proceedings.mlr.press/v305/gupta25a.html %V 305 %X End-to-end visuomotor policies trained using behavior cloning have shown a remarkable ability to generate complex, multi-modal low-level robot behaviors. However, at deployment time, these policies still struggle to act reliably when faced with out-of-distribution (OOD) visuals induced by objects, backgrounds, or environment changes. Prior works in interactive imitation learning solicit corrective expert demonstrations under the OOD conditions—but this can be costly and inefficient. We observe that task success under OOD conditions does not always warrant novel robot behaviors. In-distribution (ID) behaviors can directly be transferred to OOD conditions that share functional similarities with ID conditions. For example, behaviors trained to interact with in-distribution (ID) pens can apply to interacting with a visually-OOD pencil. The key challenge lies in disambiguating which ID observations functionally correspond to the OOD observation for the task at hand. We propose that an expert can provide this OOD-to-ID functional correspondence. Thus, instead of collecting new demonstrations and re-training at every OOD encounter, our method: (1) detects the need for feedback by checking if current observations are OOD and the most similar training observations show divergent behaviors (2) solicits functional correspondence feedback to disambiguate between those behaviors, and (3) intervenes on the OOD observations with the functionally corresponding ID observations to perform deployment-time generalization. We validate our method across diverse real-world robotic manipulation tasks with a Franka Panda robotic manipulator. Our results show that test-time functional correspondences can improve the generalization of a vision-based diffusion policy to OOD objects and environment conditions with low feedback.
APA
Gupta, P., Admoni, H. & Bajcsy, A.. (2025). Adapting by Analogy: OOD Generalization of Visuomotor Policies via Functional Correspondence. Proceedings of The 9th Conference on Robot Learning, in Proceedings of Machine Learning Research 305:5435-5449 Available from https://proceedings.mlr.press/v305/gupta25a.html.

Related Material